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CHAPTER I

INTRODUCTION

1.1 MOTIVATION AND BACKGROUND.

The éomputer simulation of electromagnetic (EM) fleld problems
has received considerable attention during the past thirty years. This is a
direct result of the realization among scientists and engineers that the com-
puter could be exploited to solve EM problems that had previously been too
complex or cumbersome to be treated by established analytical techniques..
Before the advent of computer technology, solutions of EM field problems
were often limited to relatively simple problems or geometries. Generally,
the intractability of standard analytical techniques and the nonlinearity of
solutions of EM problems is largely a result of the coupling between electric
and magnetic fields. With the aid of computers, the inherent nonlinearity
of EM field problems became more manageable and more complex EM sys-
tems problems could be and were solved. When problem solving capabilities
advanced, so did computer and electrical engineering technology. These new
technologies were then increasingly used in aerospace applications. These
applications were in control and guidance as well as more efficient servos, mo-
tors, generators and electronic sensing and surveillance gear. More recently,
high-temperature superconductors (HTS) have been discovered. These com-

posite materials are presently the subject of intensive experimental research
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and are expected to have a major impact in space propulsion, digital com-

puting, power systems and communications in the next century.

The present work is part of a research program for the numerical
simulation of EM/mechanical systems that involve superconductors. The
point of departure from previous works is the use of finite elements based
upon a four-potential variational principle to predict desired EM quantities.

The simulation involves the interact_isﬁ of the following four compo-
nents: .

(1) Thermal Fields: temperature and heat fluxes.

(2) Electromagnetic Fields: electric and magnetic field strengths and fluxes,
currents and charges.

(3) Quantum Mechanics: the constitutive behavior of the superconducting
system is governed by quantum mechanical effects. Particularly impor-
tant is the superconducting phase change, governed by phenomena at
the quantum level, and triggered by thermal, mechanical and EM field
energy levels.

All three components can be treated by the finite element method.
This treatmenf produces the spatial discretization of the continuum into
mechanical, thermal, quantum mechanical and electromagnetic meshes of a
finite number of degrees of freedom. The finite element discretization may

be developed in two ways:

(1) Simultaneous Treatment. The whole problem is treated as an indivisi-
ble whole. The four meshes noted above become tightly coupled, with

common nodes and elements.
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(2) Staged Treatment. The mechanical, thermal and electromagnetic com-
porents of the problem are treated separately. Finite element meshes
for these components may be developed separately. Coupling effects
are viewed as information that has to be transferred between these foﬁr
meshes.

The present research follows the staged treatment. More specifically,
we develop finite element models for the fields in isolation, and then treat
coupling effects as interaction forces between these models. This “divide
and conquer” strategy is ingrained in the partitioned treatment of coupled
problems [2,3], which offers significant advantages in terms of computational
efficiency and software modularity. Another advantage relates to the way
research into complex problems can be made more productive. It centers
on the observation that some aspects of the problem are either better un-
derstood or less physically relevant than others. These aspects may then be
temporarily left alone while efforts are concentrated on the less developed
and/or more physically important aspects. The staged treatment is better
suited to this approach. Of the four components listed previously, the last
two are less developed in a modeling and computational sense.

Mechanical elements for this research have been derived using- general
variational principles that decouple the element boundary from the interior,
thus providing efficient ways to work out coupling with non-mechanical fields.
The point of departure was the previous research into the free-formulation
variational principles presented by Felippa {4]. A more general formulation
for the mechanical elements, which includes the assumed natural deviatoric
strain formulation was established and reported in Refs. [5,6,7,8]. New repre-

sentations of thermal fields have not been addressed as standard formulations

i 1k
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are considered adequate for the coupled-field phases of this research. How-
ever, research in thermomechanical interactions supported by this program
has resulted in the construction of robust and efficient staggered solution
procedures [9].

The rdev;elopment of EM ﬁnite elements to date has not received the
same degree of attention given to mechanical and thermal elements. Part of
the reason is the widespread use of analytical and semianalytical methods
in electrical engineerir-lg. These methods have been highly refined for spe-
cialized but important probléms such as circuits and wave guides. Thus the
advantages of finite elements in terms of generality have not been enough to
counterwéight established {echﬁiques. Much of the EM finite element work to
date has been done in England and is well described in the surveys by Davies
[10] and Trowbridge [11]. The general impression conveyed by these surveys
is one of ’an,unsetrtlied sub ject, reminiscent of the early period (1960-1970)

of finite elements in structural mechanics. A great number of formulations

" that combine flux, intéhsity, and scalar potentials are described with the

recommended choice varying according to the application, medium involved
(polarizable, dielectric, semiconductors, etc.), number of spatial dimensions,
time-dependent characteristics (static, quasi-static, harmonic, or transient),
as well as other factors of lesser importance. The possibility of a general

variational formulation has not been recognized.



1.2 REVIEW OF EXISTING TECHNIQUES

As mentioned previously, the computer simulation and modeling of
EM field problems is presently an unsettled subject especially in nonlinear
problems. A rich variety of mathematical techniques have been used to solve
these complex problems. Some of these techniques involve using integral
transforms to find a solution, while other techniques yield solutions to the
integral or differential EM field equations that contain Bessel,‘ Airy, Gamma,
and Legendre functions [12]. A common method of computer impler-nenta-
tion involves taking the analytical representation of the solution to a problem
and making a numerical approximation to that solution. In time-independent
problems the implementation may take the form of discretizing the analytical
differential or integral EM field equations over the system’s spatial dimen-
sions [13]. Linear time-dependent problems may be transformed to Fourier
or Laplace space, solved, and then converted back to the real time domain.
The computer is simply used to make good approximations to an integral
which is an analytical solution to the problem, but for which no closed form
solution of the integral exists. While these methods are effective for specific
problems, they are rarely of a general enough nature that they can be used
on most EM system problems. A recognition of the interest in and the need
for more generalized computer solution techniques for EM field problems led
to the first COMPUMAG series of conferences in 1976 [11, p. 506].

Prior to this time, few finite element techniques existed but the power
of more generalized schemes were demonstrated in finite difference codings
that used the differential forms of Mazwell’s field equations. Usually the

conventional field quantities were replaced by potentials and the resultant
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EM field equations were discretized over space [14, pp. 101-105;15,16]. Fi-
nite difference schemes generally are not as amenable to Neumann boundary
conditions or an easy change to a higher variational order as finite element
methods. Because of the prevelance of Neumann boundary conditions in EM
field problems, especially when conventional field quantities are replaced by
a potential formulation, as well as difficulties associated with a change in the
variational order of variables when finite difference methods are used, finite
diﬁ'eArence techniques are rarely used for the spatial discretization of EM field
equations.

Maxwell’s EM field éciuétions may be recast in a potential formula-
tion. This reduces the number of independent variables for the electric field
E from three to one through the substitution E = —V®, where & is the
electrostatic potential. The reformulation of the magnetic field is more com-
plicz;ced. In Vfree' space, thl: m;gnetié field B can be defined as the negative
gradient of the magnetostatic potential ¢ (i.e., B= —V¢). This substitu-
tion reduces the number of independent variables from three to one for the
magnetic field but this potential is neither single valued nor defined in a
conductor that is carrying a steady current [14, p.139]. Another reformu-
lation substitutes the curl of the magnetic vector potential A for B (i.e.,
V x A = B). Although this formulation does not reduce the number of inde-
pendent variables in an EM field problem, it does require that the solution
ofWAV be C° continuousr aci;;éé ;1a.t<73rial interfaces, thus srirmprlifying finite ele-
ment development. Formulations that use the B field as a primary variable

are not required to be C° continuous across material boundaries. In spite

of the difficulties presented by a discontinuous variable, the majority of EM

[N YTRTT T IE AR Y )

ENECT ey
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field finite element formulations to date are based on the original EM fields,
e.g., see Refs. [17,18].

Some researchers have also experimented with magnetic vector po-
tential based finite elements [11]. These formulations use a Galerkin weighted
residual method applied to the strong form of the EM field equations. The
drawback with this approach is that the uniqueness of a numerical solution
is questionable because the divergence of A is not specified. A variational
approach based upon A can easily overcome this difﬁculty by specifying a
function or gauge for the divergence of A, weighting it by a Lagrangian mul-
tiplier, and augmenting it to the energy functional of the EM system. The
only requirement on the choice of gauge is that the Euler equations of the
weighted gauge choice equal zero. Another statement of this requirement is
that the augmented energy functional should differ ‘from the EM field en-
ergy functional by a constant [19, p. 36]. In fact, by an appropriate use
of the Lorentz gauge, the Lagrangian, or energy functional, of the EM field
equations can be used to perform a canonical transformation to produce the
Hamiltonian of the system [20, pp. 72-91]. The only EM finite elements
that use the approach of energy functionals augmented by a weighted gauge
equation are the ones presented in this work.

As mentioned on the previous page, the magnetic scalar potential
can be used to calculate the B field in free space and reduce the number of
independent variables from three to one. To increase computational speed
and reduce memory allocation, Trowbridge [11] has coupled A with ¢ to
produce a new independent variable vector quantity R. R requires that three
variables be solved in a conducting media and only one variable be solved in

free space. This method has drawbacks, specifically that R and ¢ are not
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unique, and that in the interior of conductors cancellation problems arise
that can give erroneous values for B (11, pp. 521-525].

To model EM fields in a superconductor, another field variable must
be included: the wave order parameter . This function can be complex and
the absolute value of % times its complex conjugate (|¥*| = |¢|?) is defined
as the number density of superconducting electron pairs. This new variable
accounts for the quantum mechanical effects that appear in the interior of a
supercondﬁctof. These quantum effecps change the value of the B field and
current density vector j Witlﬁn a superconductor.

A w1de1y used méfhématicalrir;lbéelit;ﬁ;t: Héséﬁbes quanf::um and EM
interactioné within a sui)érconductor are the :&iﬁébﬁr;q-Ldndau equations [21,
p 104] . These equations reduce to Maxwell’s equations, the same equa-
" tions that govern EM fields in normal conductors and in vacuum. The
szburg-La.nda.u eqﬁ:é,t'iéri;al,ﬁ'é derived using variational principles and re-

quire a unique gauge choice to ensure that a superconducting current can
only exist in a conductor as physics demands. The gauge choice used in the
present work is ca.ﬁ(;d the London gaﬁge and is réQﬁiﬁvélent to the Lorentz
gauge for magnetostatic problems. The Ginzburg-Landau equations also
contain A explicitly as well as the vector curl of A. To model superconduc-
térs numerically, the optimal choice of independent variables is to use A.
The use of a field based formulation requires the numerical integration of
B to remove terms in the Ginzburg-Landau equations that contain A. This
integratiori can easxly becorde the soufce o} additional numerical error, an
error that is not present when the choice of independent variable is A.

' Afinite différehégifc;;mulatioh of the szburg—Lé.ndau equations has

been developed that producs reasonable results [15,16]. The formulation uses
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A as a primary variable, but thermal effects are neglected when this model is
in the normal state. This formulation also suffers from the previously men-
tioned drawbacks of finite difference methods in the treatment of arbitrary

geometries.

1.3 THESIS CONTENT.

The objective of this thesis is to develop EM finite elements for type I
and II superconductors based upon a gauged four-potential variational prin-
ciple. At present, the physics of high temperature superconductors (HTS) are
not well enough understood to permit the development of an adequate math-
ematical model. The last elements developed in this work include thermal
coupling, but are magnetostatic. This restriction is motivated by the fact
that the time-independent problem exhibits strong nonlinearities; further-
more, no completely satisfactory mathematical model has been developed
for the time-dependent case [21, p. 273]. The highly nonlinear nature of
the problem is the result of a boundary layer effect exhibited at a supercon-
ductor /normal conductor or superconductor/vacuum interface. Extremely
strong gradients of the independent variables 4, A, B, and j are present in
this regime. These gradients bring about serious numerical difficulties, the
most important ones being a h;ighly ill-conditioned system of incremental
equations and the need for speciglized mesh discretization. The final super-
conducting finite element developed is of a general enough nature that it
works equally well in both the boundary layer and the bulk of the super-
conductor. Unlike the previously mentioned field based formulations, this
element requires no special treatment for material interfaces, in particular,

the superconductor/vacuum interface.

{
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The derivation of all of the EM finite elements in this thesis are based
upon a four-potential variational formulation that uses the four-potential as
the primary variable. The electric field is represented by a scalar potential
and the magnetic field by a vector potential. When the superconductor is
modeled, the electric field scalar potential is dropped, because it does not
couple with the magnetic field in the magnetostatic case. The modulus and

phase of ¢ are then added as new independent vanables The formulation of

' the four-potentlal variational pnnaple proceeds along lines previously devel-

h oped for the acoustic fluid problem [22 23]. The approprlate gauge normal-

ization is incorporated in the variational (weak) form through the adjunction
of a Lagrange multiplier field.

The main advantages of developlng finite elements using a potent1al
based variational formulation in contrast to using existing EM numerical

techniques are summarized as follows.

7 (1) Interface dlscontmuxtles are automatlcally taken care of without any

special intervention.
(2) No approximations are invoked a priori since the general Maxwell equa-

tions are used.

. (3) The number of degrees of freedoxn per ﬁmte element node is kept modest

‘as the problern dlmensxonahty increases.
(4) | ngher order and hybnd elements are more easxly accomodated.

(5) The szburg—Landau equatzons naturally possess A as an 1ndependent
variable; possibilities for errors from an additional numerical integration
are removed.

(6) A generalized formulation that posesses a broad range of applicability.
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REMARK 1.3.1
An interesting byproduct of this formulation is that with minor modifications, it
can be used to describe the physics of a superfluid. See Ref. [20], pp. 152-158.

1.3.1 FINITE ELEMENTS.

A total of eight finite elements were developed in the course of the
the author’s research. Seven of these are based upon the four-potential varia-
tional principle, and the last is a thermal conduction element developed from
a different variatiénal prineiple according to Ref.[24]. They are in order of
development: V
(1) aone-dimensional Coupled Linear Electric and Magnetic field (CLEM1D)
finite element

(2) a two-dimensional axisymmetric Coupled Linear Electric and Magnetic
field (CLEM2D) finite element

(3) a one-dimensional Coupled Linear Electric and Magnetic field INFinite
(CLEMINF) finite element

(4) a one-dimensional CUrrent Predicting Linear Electromagnetic (CU-
PLE1D) finite element

(5) aone-dimensional Superconducting Thermal, Electromagnetic and Phase
coupled (STEP1D) finite element

(6) a one-dimensional Superconducting ThErmAl, and eLectromagnetic
field (STEAL1D) finite element

(7) a one-dimensional LINear Thermal conduction (LINT1D) finite element

(8) aone-dimensional Linear Electromagnetic and Thermally coupled (LET1D)

finite element
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Elements (1), (2) and (3) predict only electric and magnetic fields. Element
(3) was developed as a term project, but has limited practical usage except
for the development of an EM finite element that is time-dependent. Ele-
ments (4), (5), (6), and (8) can predict EM fields, but also have the ability
to predict the current density distribution, j, given the scalar input I, the
total current. Element (6) is not presented here, because it can easily be
derived from element (5) by constraining the variable || to be a constant.
This formulation is known as the the London formulation for superconduc-
tors. This element was developed solely for the purpose of troubleshooting
element(5) [25]. Element (5) also predicts the quantum mechanical quantity
||. It also contains two thermally dependent material parameters. These
two parameters couple the superconductor to thermal fields. Element (7)
was constructed to predict the temperature distribution within the conduc-
tor. Element(8) can predict j and EM fields, but is coupled to thermal fields

by the electrical resistivity, w.

REMARK 1.3.2
Appropriate changes to the Ginzburg-Landau theory and finite element formulation
for the construction of element (6) are listed in this thesis. Results for (6) are
deleted as they are not as accurate as the results obtained from the STEP1D finite
element which is based upon the complete Ginzburg-Landau theory where 4 is
allowed to vary.

' 1.32 DISSERTATION OUTLINE.

Therdisrsertation is organized as follows. Chapter II is devoted to
a review of basic EM theory, and the development of fdﬁr-iibténtiai theory.
Variational functionals for two cases where the current density vector j is

known are also discussed. Chapter III is devoted to the development of vari-

ational functionals for conductors where j is undetermined. In this chapter,
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functiona.is for the normal and superconducting states of a conductor are pre-
sented. Chapter IV introduces the variational functionals necessary for the
time-independent heat conduction and convection problems. Some general-
ized solutions for one-dimensional conductors are also presented here. This
chapter also includes formulas that express the values of a conductor’s EM
material properties as a function of the temperature 7. Accurate numerical
approximations for the values of these material properties are also developed.

‘ The first four chapters outlined above comprise the first step in the
development of EM finite elements that can model the quantum and ther-
mal effects that appear within a superconducting material. The main goal of
these chapters is to develop variational functionals that are later discretized
to produce finite elements. These finite elements are then used to analyze the
thermal, quantum and electromagnetic properties of a conductor for some
specific EM field problems. The following seven chapters are devoted to de-
veloping finite elements and solving those specific EM field problems. Where
an analytical solution to the field problem exists, it is presented in that chap-
ter. If special numerical procedures are necessary for the solution of the field
problem, the procedures are also discussed in that chapter. Chapters V and
VI deal with one and two-dimensional axisymmetric EM field problems re-
spectively, where the current density vector j is known and the conductor
remains in the normal state. Chapter VII presents the finite element solu-
tion of a one-dimensional axisymmetric conductor in its normal state where
the current density vector j is unknown. Chapter VIII is concerned with
finding the values of EM fields within a one-dimensional time-independent

axisymmetric superconductor. Chapter IX develops a one-dimensional heat
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conduction finite element. This element is employed with a modified ver-
sion of the element of Chapter VII to solve the coupled problem of a one-
dimensional axisymmetric conductor that is subjected to a varying thermal
load. Chapter X employs appropriately modified versions of the elements
of Chapter IX to solve the coupled EM-thermal system where the electric
current through a one-dimensional axisymmetric wire is varied. Chapter
XI models the complete quantum, themal and EM field problem for a one-
dimensional axisymmetric wire. The temperature 7 and the electric current
are allowed to va.ry, but the wire is also allowed to change its quantum state
and be either a normal conductor or a superconductor. °

The last chapter, Chapter XII, contains a broad summary of the
dissertation. This chapter highlights some of the more important aspects of
the variational methods used here. It concludes the dissertation with a small

section on new research directions that the thesis research has suggested.



CHAPTER II

EM AND FOUR-POTENTIAL THEORY

2.1 ELECTROMAGNETIC FIELD EQUATIONS.

2.1.1 THE MAXWELL EQUATIONS.

The original Maxwell equations (1873) involve four three-vector
quantities: B, D, E, and H. Vectors E and H represents the electric and
magnetic field strengths, respectively, whereas D and B represent the electric
and magnetic fluxes, respectively. All of these are three-vector quantities,
that is, vector fields in three-dimensional space (e.g., in Cartesian space,

II=ZT,22=Y, T3 =2):

E, D, B H,
E = E2 D = D2 B = B2 H = H2 (21.1)
E3 D3 B3 H3

Other quantities are the electric current 3-vector j and the electric charge
density p (a scalar).
With this notation, and using superposéd dots to denote differenti-

ation with respect to time t, Maxwell equations can be stated as

B+VxE=0 VxH-D=j
(2.1.2)
V-D=p V:-B=0

The first and second equation are also known as Faraday’s and Ampere-

Maxwell laws, respectively.



16

The system (2.1.2) supplies a total of eight partial differential equa-
tions, which as stated are independent of the properties of the underlying

medium.

REMARK 2.1.1

Some authors, for example, Eyges [26], include 47 factors and the speed of light ¢
in the Maxwell equations. Other textbooks, e.g. [27, 28], follow Heaviside’s advice
in using technical units that eliminate such confusing factors.

2.1.2 CONSTITUTIVE EQUATIONS.

The field intensities E and H and the corresponding flux densities
D and B are not independent but are connected by the electromagnetic
constitutive equations. For an electromagnetically isotropic, non-polarized

material the equations are

B=uH D =¢E (2.1.3)

Whe,re 7 a.nd e a.re the perméability and rpermirtirxrrrirtty,rrérsip;e'cir:ively, of :the ma-
terial. These coefficients are functions of position but (for static or harmonic
fields) do not depend on time. In the general case of a non-isotropic mate-
rial both ¢ and e become tensors. Even in isotropic media u in general is
a complicated function of H; in ferromagnetic materials it depends on the
previous history (hysteresis effect).

In free space p = po and € = ¢, which are connected by the relation

1

Ho€o

(2.1.4)

2 _
=

where ¢q is the speed of light in a free vacuum. In rationalized MKS units,

co = 3.108 m/sec and

o = 4rx 1077 henry/m, € = pglcy? = (36m)”! x 107" sec?/(henry - m)

(2.1.5)
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The condition g & po holds well for most practical purposes in such media
as :«ﬁr and copper; in fact ggir = 1.000000440 and pcopper = -99999u0.
The electric field strength E is further related to the current density
j by Ohm’s law:
j=0oE (2.1.6)

where ¢ is the conductivity of the material. Again for a non-isotropic mate-
rial ¢ is generally a tensor which may also contain real and imaginary com-
ponents; in which case the above relation becomes the generalized Ohm’s
law. For good conductors o >> ¢; for bad conductors ¢ << e. In free space,

oc=0.

2.1.3 MAXWELL EQUATIONS IN TERMS OF E AND B.

To pass to the four-potex_ltia.l considered in this work it is convenient
to express Maxwell’s equations in terms of the electric field strength E and
the magnetic flux B. In fact this is the pair most frequently used in elec-
tromagnetic work that involve arbitrary media. On eliminating D and H

through the constitutive equations (2.1.3), we obtain

B+VXxE=0 VxB — peE = 4j
(2.1.7)

V-E=pfe V-B=0

The second equation assumes that ¢ is independent of time; otherwise E =
e dE/dt should be replaced by d(¢E)/dt. In charge-free vacuum the equations

reduce to

B+VxE=0 VxB——15E=0
i (2.1.8)

V.-E=0 V-B=0
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2.1.4 THE ELECTROMAGNETIC POTENTIALS.

The electric scalar potential & and the magnetic vector potential A

are introduced by the definitions

E=-V3d-A B=VxA (2.1.9)

This definition satisfies the two homogeneous Maxwell equations in (2.1.7).
The definition of A leaves its divergence V - A arbitrary. We shall use the

Lorentz ééugé [29]

V-A+uped=0| (2.1.10)

With this choice the two non-homogeneous Maxwell equations written in

terms of ® and A separate into the wave equations

V2P — ped = —pfe VA - peA = —uj (2.1.11)

2.2 THE ELECTROMAGNETIC FOUR-POTENTIAL.

Maxwell’s equa.ticr)n"s” can be presented in a compact manner (a form
compatible with special relativity) in the four-dimensional spacetime defined

by the coordinates

r

1=z, T2y, Ta=z, Tq=ict (2.2.1)

where z;,z2,z3 are spatial Cartesian coordinates, i2 = —1 is the imaginary
unit, and ¢ = 1/,/p€ is the speed of EM waves in the medium under con-
sideration. In the sequel Roman subscripts will consistently go from 1 to 4
and the summation convention over repeated indices is used unless otherwise

stated.
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2.2.1 THE FIELD STRENGTH TENSOR.

The unification can be expressed most conveniently in terms of the
field-strength tensor F, which is a four-dimensional antisymmetric tensor

constructed from the components of E and B as follows:

0 F12 F13 F14 0 CB3 —CBz —iEl
F= —-F, 0 Fo3  Fpy| def —cB3 0 cBy —iE
- —F13 —F23 0 F34 =7 CB2 —'CBl 0 —'iE3
—Fy —-Fp -F3 O 1y 1E, 1Es 0
' (2.2.2)

Here « is an adjustment factor to be determined later. Similarly, we can

introduce the four-current vector J as

v CHIa Bt
Jo | det citja P

J= = . = . 2.2.
Ja v ciis e K3 (22.3)
Ja ip/e iV u/ep

Then, for arbitrary v, the non-homogeneous Maxwell equations, namely
VxB — pueE = pj and V- E = p/e, may be presented in the compact
“continuity” form (the covariant form of these two equations):

OFy
Bz

J; (2.2.4)

The other two Maxwell equations, V- B = 0 and VXE + B = 0, can be

presented as

OFi + OF mi + OFm
axm Bxk 6:.!:,'

where the index triplet (¢, k,m) takes on the values (1,2,3), (4,2,3), (4,3,1)

=0, (2.2.5)

and (4,1,2).
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2.2.2 THE FOUR-POTENTIAL.

The EM “four-potential” ¢ is a four-vector whose components are

constructed with the electric and magnetic potential components of A and

d:
é1 cA,
¢2 | def ) cA2
= = 2.2.6

=719 4, cAs (2.2.6)
P4 @

It may then be verified that F can be expressed as the four-curl of ¢, that is

Odr  Od:
Fjp=— - —, 2.
¥ B B (2.2.7)

or in more detail and using commas to abbreviate partial derivatives:

0 21— 12 31— b13 b4 — D14
| b2 =21 0 P32 — P23 Pa2— 2.4
F= 13— P31 P23 — P32 0 43— P34 (2.2.8)
P14 — P41 ¢2,47— a2 P3,4— P43 0

With these definitions, the basic Lagrangian of electromagnetism can

be stated as

2
L=1F4Fu—Jidi=17 9y 26\ _ Jigi
Oz; Oz (2.2.9)

2 B
= 17 (B = E%) - T(j1 A1 + jods + Ja Az — p®)

in which .
B:=BTB=B?+B:+B2, E*=ETE=E!+EZ+E} (2210)
Comparing the first term with the magnetic and electric energy densities

26,27,28]

Uy = iBTH = — B, Ug = iDTE = 1¢E?, (2.2.11)

1
2p
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we must have y2¢? = 4% /(ue) = 1/u, from which
v =/ (2.2.12)

Consequently, the required Lagrangian is

L= ZBZ - 3eE? — (j1A1 + j2 A2 + j3As — p®). (2.2.13)

The associated variational form is

t
R= / / LdVat (2.2.14)
to 1%

where V is the integration volume considered in the analysis. In theory V
extends over the whole space, but in the numerical simulation the integration
is truncated at a known boundary or special devices are used to treat the

decay behavior at infinity.

REMARK 2.2.1

Lanczos [30] presents this Lagrangian for free space, but the expression (2.2.13)
for an arbitrary material was found in none of the textbooks on electromagnetism
listed in the References.

2.2.4 THE GAUGED LAGRANGIAN.

If the fields A and @ to be inserted into L do not satisfy the Lorentz
gauge relation (2.1.10) @ priors, this condition has to be imposed as a con-
straint using a Lagrange multiplier field A (z;), leading to the modified or

“gauged” Lagrangian:

Ly=L+X(V- A+ ped) (2.2.15)
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2.2.5 THE FOUR-FIELD EQUATIONS.

On setting the variation of the functional (2.2.15) to zero we re-
cover the field equations (2.2.4) and (2.2.5), as well as the gauge constraint
(2.1.10) as Euler-Lagrange equations. Taking the divergence of both sides of
(2.2.4) and observing that F is an antisymmetric tensor so that its divergence
vanishes we get
aJ;

.é_z_: =cu(V-j+5)=0 (2.2.16)

The vanishing term in parenthesis is the equation of continuity, which ex-
presses the law of conservation of charge. The Lorentz gauge condition
(2.1.10) may be stated as 0¢;/0z;. Finally, the potential wave equations

(2.1.11) may be expressed in compact form as
O¢i =—J; (2.2.17)

- where [0 denotes the “four-wave-operator”, also called the D’Alembertian:
52 52 52 5 52
o¥ =92tz 52 =
Oz, 0z Oz  0Oz3 0z5 c20t?

(2.2.18)

Hence each component of the 'fb;f:prbtehtial ¢ satisfies an inhomogeneous
wave equation. In free space, J; = 0 and each component satisfies the homo-
geneous wave equation.

The follow;ing sections of this chapter are devoted to derivations of
the appropriate éxpression for L, for selected cases. Trhe first variation of R
with respect to the independent variables is also taken. With few exceptons,
the solutions of thé iﬁdependent variables ® is not determined. The variation
is perforrhed primarily to determine the natural boundary conditions of each

test case for the eventual extension of the four-potential method to finite
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element analysis. The variation is also performed to confirm the validity of
the four-potential method as an analytical tool by directly comparing the re-
sultant Euler equations minus the Lagrange multiplier terms with Maxwell’s

field equations.

2.3 THE ONE-DIMENSIONAL AXISYMMETRIC CASE.

The simplest application for the four-potential variational principle
is to an infinitely long, straight conductor of circular cross section which car-
ries a known, time-independent uniform current in the longitudinal direction
(Fig. 2.1.). To take advantage of the axisymmetric geometry a cylindrical
coordinate system is chosen with the wire centerline as the longitudinal 2-
axis. The vector components in the cylindrical coordinate directions r, 6 and

z are denoted by

Ay, By, By

A,, B, E, in the r (radial) direction,
Ay, By, E; = Ay, By, Eg inthef (circumferential) direction,
As, B3, E3 = A;, B,, E, in the z (longitudinal) direction.
The first step in solving for the fields is to express the gauged La-

grangian

Ly==—B%—1eE? - (iTA — p®) + A (V - A + ped), (2.3.1)

1
2p

in terms of the potentials written in cylindrical coordinates.
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For B? we use (2.1.9), (2.2.10) and the cylindrical-coordinate curl formulas

to get

. (104, 0A4g\® (04, 0A.\" (18(r4e) 104.\°
B = (r 890 0z T\ %z or NS r 06 (2.3.2)

For E? we use (2.1.9) and the cylindrical-coordinate gradient formulas to

Q -
E E, G A_'
E={E y=1{E =-1{ 388 +4, (2:3.3)

Es E. 02 _
'a? + Az

produce

so that (2.2.10) becomes

0% 04\’ 108 0A4,\° 0% 0A4,\?
2 _ oTr — r St Wik 4 == z
E_EE—<6T+5)+<7_60+9)+<62+ 5) (2.3.4)

For the Lorentz gauge we use the cylindrical-coordinate divergence formula

to get
19(rA) 1945  OA;

V-A+pe@=r Ew =59 + P + ped (2.3.5)

The electromagnetic fields, for the one-dimensional case, only vary in the
radial (r) direction and any partials with respect to § and z vanish. In the
time-independent case, all partials with respect to ¢ also vanish. With no
static charge density, p = 0, and with only a longitudinal current, the single
non-vanishing component of j is j,;. The constitutive relation (2.1.6) can be
used to remove the dependence of L, on ®; because j, is known, E is knéwn,
and it is not necessary to carry the terms in L, necessary to determine E.

These simplifications produce

L - 51; {<a£z)2 . G 6(1;;19))2 .y (1 a(gfr)) 6. A,)} (235)
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The first variation of R, with (2.3.6) as the Lagrangian, with ‘respect to Ag

gives the Euler equation:
o(r4,)
or

0 (2.3.7)

The solution for A, is simply a constant over r. For A, to remain bounded
as r goes to zero, the constant must be zero. The first variation of R with
respect to Ay and integration by parts yields the following Euler equation
for Ap - |

rg; (%2%;1&) =0 (2.3.8)
The solution to this equation is Ag = Cir + Cor™t where C; and C; are
constants of integration. Again C, rpust be zero for Ag to; remain bounded
as r approéﬁhés zero. If C; is rnorrlzéro, a magnetic field will exist in the 2
(ibngitudinal) direction. For tlr’xréipxjol;lems considered here, the only magnetic
fields that exist are generated by the current I in the wire and C; is also
chosen to be zero.

Because A, and Ay are identically zero, it is not necessary to carry
the terms in (2.3.6) dependent upon A, and Ag. Coﬁsequently, the exprés—

sion for the gauged Lagrangian for the one-dimensional, time-independent

axisymmetric conductor with a known current density distribution is

2
L, = i { (a;,) - (j,A,)} (2.3.9)

Notice that for this partlcular gébméfry, with time-independent fields, the

gauge choice for A does not contribute to the Lagrangian and A is completely
determined by the boundary conditions. For this particular case, L is equal

to L,.
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The new expression for R is

1 [0A;
R=/v‘”’{§ﬁ< ar

The first variation of R with respect to A, and integration by parts produces

5R=-—/ dV45A, {—1— (-2 (raAz))-i-jz} + /dF&A, {LaAz}
v ur \Or or r p or )|,

(2.3.11)

2
) - (j,A,)} (2.3.10)

T

where T is the surface of the integration volume considered in the analysis,
and r; and r; are the inner and outer radial limits respectively of the integra-
tion volume. For this problem, dI" is simply dfdz. Substituting the relation
for B from (2.1.9) (i.é., B = VxA) into the Euler equation in (2.3.11) gives
the following Maxwell relation and verifys that (2.3.9) is the correct form for

Lg.
19(rBy) .

— js (2.3.12)

2.4 THE TWO-DIMENSIONAL AXISYMMETRIC CASE.
The next simplest problem with which to test the four-potential

method is the two-dimensional axisymmetric case. As in the one-dimensional
case, the current is steady (time-independent) and known, p is still zero, and
cylindrical coordinates are chosen with the rotational axis coinciding with
the z axis. The four-potential method is now extended to cover this problem
by allowing ¢ to vary in the radial and longitudinal directions &, and &, but
not in the circumferential direction &4. Here, and in the sequel, &,, &, and
&, are defined as the unit direction vectors in the r, 8 and z directions respec-
tively. All partials with respect to 8 now disappear but partials with respect

to z now remain. Since the problem is time-independent, and j is known,
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partials with respect to ¢t and partials containing ® can be eliminated. The

gauged Lagrangian is now

2 2 7 2
Lg - _1_ GA 6Az + 6Ag + la(rAg)
2u Oz “or Oz r Or
3( A ) (2.4.1)
10(r ] . .
+A9 (7‘ or 2 ) _(JTAT +.78A9 +JzAz)

Note that this Lagrang1an 1nvolves all components of A although the inde-
pendence from 0 has 1ntroduced some 51mphﬁcat1ons W1th respect to the full
three-dimensional case.

Variation of the above with respect to A, and integartion by parts

produces
§R(A,) = /dVéA { Fa, DA +3 +?—A—
T 922  0z0r Or
A, BA, % i
T drl&A { ( 0z or )} z I, 2o {TAQ} r;
(2.4.2)

where dI'; and dT’ 27a.f; defined as rdrdf and dfdz in the & - and &, directions
" respectively and z; and z; are the lower and upper limits of integration
respectively, of the integration volume in the &, direction. To verify that
the first three terms of the volume integral in (2.4.2) represent a Maxwell
equation,r the expression for B in terms of A,, Ag and A, is needed. The
coﬁect expression for this problem is - -
= \ ” \
B,é, ?4&

g

B= Bobs = (- )

B.é, 1.2 (ray)e.

\ / \ /

-

(2.4.3)
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The following expression for VxB in terms of B,, Bg and B; is helpful for

verification purposes:
( 1
aB g,

VxB = (?gz —3—1) & (2.4.4)
Fa-;(f‘Bo)é,

\ J

Comparison of the § component of B with the Euler equation of (2.4.2)
verifies that it is the Maxwell equation VxB = pj in the &, direction.
Variation of (2.4.1) with respect to Ag and integration by parts pro-

duces

- oo 3 (284 £ (B om)) o3

d1‘16A9{13A9} + dT25Ao{——(rAe)}
p 0z z T, po

T

T r:

(2.4.5)

Comparison of the r and § components of B in (2.4.5) verifes that the Euler
equations match the desired Maxwell equation in the &, direction.

Finally, variation of (2.4.1) with respect to A. and integration by

parts produces

18 ( (0A, 0A, . B,
o= [ vsa {5 (3 (- (52 - 57))) - 32
i 1 (04, O0AN\|”
N dT164, {r),} . + ", dl'26A, { (82 e )} y

(2.4.6)

Comparison of the § component of B again verifies the derivation of the

correct Euler equation, this time for the &, direction.
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2.5 SUMMARY.

In this chapter, the terminology and basic background for dealing
with EM fields is developed. The four-potential method is also introduced
and modified for a.rb:tra.ry materials. The basic Lagrangian for EM field
problems is presented and a gauged form of this Lagrangian is also shown.
To show the broad range of apphcablhty of the four-potential method to EM
field problems, the gauged Langrangian for two simple time-independent
cases is derived. The first variation of this Lagra.r'lgian, integrated over the

mdependent vanables 1s a.lso taken. This va.natwn is performed to verify

7 rthat the Euler-La.grange equatxons for these two partlcular cases match their

respective Maxwell equatlons and also to determine the natural boundary
cond1t1ons for each case.

In the next chapter the four- potentxal method is extended again to
obtam the appréi;;éte Lagra.ng1a.n for two specxa.l cases. These cases are a

conductor with an unknown current density vector j and a conductor in the

superconducting state.



CHAPTER III

CURRENT DENSITY PREDICTING FOUR-POTENTIAL THEORY

In the previous chapter, the current density distribution j is known.
Unfortunately, for the general case, neither the path that the current I takes
through a conductor nor its distribution is known. In this chapter, two
different cases where I is"known, but j is not, are examined. The first
case is a normal conductor and the second case is a type I or II (Ginzburg-
Landau) superconductor. Both cases have an identical geometry, that of a
one-dimensional infinite wire and both are time-independent with p equal to
zero. Cylindrical coordinates are used to describe the problem with the z
axis coinciding with the rotational axis of the wire.

The purpose of this chapter is to develop the Lagrangians for each
of the two problems, and their residuals (Euler equations), so that they may
be extended to a finite element formulation. Also included in this chapter is
a brief presentation of the basic theory of superconductivity for types I and

II superconductors.

3.1 LINEAR CONDUCTORS.

The previously derived Lagrangian for the time-independent case in

three dimensions is

1 1 .
L= /VdV {-2; (VXA)' (VxA) = 5eV8TVe — JTA + 2, (V- A)}

(3.1.1)
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where the superscript T represents the transpose of the matrix or vector.

The constitutive equation for a linear conducting medium is

j=0oE = -0V (3.1.2)

As a first guess, (3.1.2) is used to eliminate j from (3.1.1) in terms of the

variable ®. The resulting equation for the Lagrangian 1s

L, = {51- (VxA)T (VxA) - -;-evqﬂ"w +0VITA +),(V- A)}
p©
(3.1.3)
Integrating L, over the volume and taking the first variation yields, after

integration by parts, the following equation

6R=/ dVJAT{;ll-VxVxA+aV<I>—V/\g}—/ dV63V - {eVE — cA}
14 Vv

+/I:dI‘5AT {% (VXA x ) + (- /\g)} + /r dT'6® {¢V® +0A} -1

(3.1.4)

where fi is the unit outward normal to the surface of the volume of integra-
tion.

" The first volume integral is an augmented form of Maxwell’s equa-
tion VxVB = j, whereas the first boundary integral ensures that the B field
component parallel to the surface is continuous across boundary surfaces.
If o is constant across the volume of integration, then the second volume
integral is a restatement of the Mascwell equation V-D = 0 because V-(cA)
= oV - A = 0. The second boundary integral enforces the condition that
the normal component of D be continuous across boundaries. For the one-
dimensional problems studied lgefg where the value of e¢ does not change
across boundaries, this condition automatically satisfies the homogeneous

Maxwell equation VXE = 0.
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If o is constant across the whole volume of a conductor, this formula-
tion presents no difficulties. However, if o changes as a continuous (smooth)
function across a conductor, the second Euler equation is incorrect. This
can be corrected by augmenting the Lagangian with the constraint V-D =
0 or by changing the gauge constraint to V - (¢A) = 0. If the conductivity
changes slowly across the conductor, the conductivity can be approximated
by a series of step functions. At low temperatures, for the conductors exam-
ined in this work, the conductivity does change slowly across the conductor
volume and the step function approximation is used. This formulation also
has problems. The second boundary and volume integrals in (3.1.4) combine
to produce a series of n — 1 equations for n unknowns where n is the number
of differing regions that E field passes through. These regions are caused
by the choice of integration volumes and changing EM material properties.
Augmenting (3.1.4) by the current conservation constraint, I = [ dTa, - j,
where fi, is the directed unit normal to the surface that the current flows

through, solves this problem. . is aligned in the direction on current flow.

The new functional Ry is

Rgec =/ av {51; (VxA)T (VxA) - —;-eVQTVQ +oVETA + 2, (V- A)}
V .

+ Ac (I+/dI‘a’ﬁc-V<I>)
r

(3.1.5)
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Variation with respect to A and ¢ produces
§Ryec = /V dVSAT {%VXVXA +oVE - V,\g}
- /v dVéd (V- (eV® — cA) + VA.}
+ /F dT6AT {%(VXA x @) + (-h Ag)} (3.1.6)
+ / dT63 {(eV® + 0A) - fi + Ao}
+ &), (I + / dlof, - V<I>>

~ For ant1c1pated extensmns to superconductlwty, 1t was ongma.lly de-

sirable to have jasa pnma.ry variable whereas the electncal potentla.l was

[ Tea

7 of httle mterest R,cc was wrltten 1n terms of the vanables A and j and the

first variation and mtegratmn by parts was performed to give
1
$Rgee = / dVSAT {;VXVXA -Jj- V’\g} - / dVéj{es?j+ A}
v v
+/dI‘5AT {%(VxA X 1) +(.ﬁAg)} +/\c/d1"6j B,
T r

+ 68X (I—/dl"ﬁc-j)
T

where w, the resistivity, equals 1/0.

(3.L.7)

The second Euler equation ew?j + A = 0, which replaces V-D=

0, is generally incorrect: this is due to the elimination of V@, which inhibits
the necessary integration by parts. The lack of this integration also has the
effect of forfeiting the automatic verification of the homogeneous Maxwell

equation VxE = 0. These deficiencies can be corrected by augmenting Rgc.
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with a Lagrangian multiplier field x to produce the new functional, R,, which
follows.
R, / dv{— (VxA)T (VxA) - —ew 25T +5TA
(3.1.8)
+ 2, (V-A)+ KT(waJ) + A ( / dTn, - J)

At the start of the thesis research, for the finite element work, wj was
originally substituted for =V in (3.1.1). The original equations produced
a variational index of zero for j. This variational index is a constraint that
was kept as an arbitrary choice to make the research proceed more rapidly
and results in a formulation that is not the most computationally efficient.

For the one-dimensional problem, ® as a primary variable, not j, is
the better choice. A formulation that uses ® is better because it only varies
in the z direction. This requires only two degrees of freedom over the whole
domain of the problem to model E and D. With j as the primary variable,
one degree of freedom per element is needed to evaluate j, and a minimum
of two additional degrees of freedom per element are necessary to evaluate
K. The j formulation requires three degrees of freedom per element to model
the E and D fields.

Another advantage of the & based formulation is that with the gauge
choice V- (gA) = 0, only one constraint has to be augmented to the gauged
Lagrangian, the current conservation constraint. An additional benefit of
the ® formulation is that it does not exclude a o that varies smoothly. In
the thesis formulation, because j is C~! continuous, ¢ must also be C~!
continuous to satisfy the homogeneous Maxwell equation VXE = 0.

However, the formulation that was used to produce numerical results

here contains j as primary variable and not & because of time limitations on
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the thesis research. To reproduce this formulation, it is necessary to integrate

(3.1.8) by parts to lower the variational index of j to zero. The result is

_ 1 T Ty S o
RP—_/VJV{Z;;(VXA) (VxA) il j+itA

+X,(V-A) +ij(Vxn)} (3.1.9)

+/d1"ij(nxﬁ)+)\c(I—/dI‘ﬁc-j)
’ r T

3.1.1 ONE-DIMENSIONAL LINEAR CONDUCTOR.

As in section 2.3, the simplest application arises for an infinitely
long, straight conductor of circular cross section. A depiction of the physical
problem is illustrated in the upper half of Figure 3.1. Again, p equals zero,

and all partials with respect to 6 and z vanish. The only nonzero components

of A and jare A; and ;.. By (3.1.2), the only nonzero component of Eis E,;

~ consequently the only nonvanishing component of k is in the &4 direction.

The expression for R, reduces to

P T
RP—/VJV{Z;L(AZ) ew s J,Az+w]zrar(rrcg)

2
+}\c (I‘_/ drljz)
r; a8

(3.1.10)

- dlwrj.Ke
T2

- where dI'; and df‘l are again defined as drﬁd:rz’ a.nd rdrd9 respectively. Varia-
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Figure 3.1: Physical Problem: One-dimensional bulk conductors.
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tion with respect to A;, j; A. and k4 and integration by parts produces

1 /0 [ 0A. :
- favon {3 (5 (%)) 7
. 2. 10 .
— [ dVéj,dew’j, + A +w—==(rrg) p — [ dl16j:A,
v 7'67' I,

._/ dV&Kg—-————a(sz)
r» 74 3r

+ 6 (I— / drlj,)+ drzsAz{iaA‘}
Fl - rg I‘L ar

ri

(3.1.11)

dlywrbj ke

3.2 SUPERCONDUCTIVITY. -~~~ - — =

This section presents some of the basic theory of eupercgpductivity
and the applicatiron of the four-potential method to the solution of the time-
independent eupei‘conductor problem. Fg!,: tkﬁusﬁp;oblem, p is taken as zero,
and the veﬁek;le & is nc;tlofnger required; For cases where E or p are not zero,
the supefconductor beheves as a ﬁorma.l conductor for the E ahd D fields,
and these fields can be treated by the methods “d15cussed in the previous

chapters. The departure from a normal conductor is exhibited in the B

‘and H fields : a.nd in the resxsta.nce of a superconductor There is an almost

:complete absence of res1sta.nce and the Bvand H fields are non- -linear. The

hnea.r constltutlve relation (3 L 2) no longer apphes, and j is now a function

of A and the qua.ntum mecha.mcal quantity, the wave order pa.ra.meter ¥. For

these reasons, the non-hnea.r ﬁelds and non-linear constitutive equations, this
work dea.ls excluswely with magnetostatlc superconductor problems

The most w1dely accepted m.lcroscoplc theory of low temperature

superconductivity is due to Bardeen, Cooper and Schreifer [21, pp. 16-71] and
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is referred to as BCS theory. No attempt is made here to present the BCS
theory of superconductivity, as the author’s work is based on the Ginzburg-
Landau equations. The Ginzburg-Landau equations, which describe types I
and II superconducting phenomena, are based upon the BCS theory. The
important result of the BCS theory is that below a certain temperature it
becomes enérgetically more favorable for “free” electrons to bind together in
pairs, called Cooper pairs, and that the density of these pairs in a volume
can be represented by the quantum probability density function . Table

3.1 lists the relevant nomenclature for superconductivity.

Table 3.1 Superconducting Theory Nomenclature

Symbol Quantities

a, B Temperature dependent material parameters

P Analgous to a wave/position
function in particle mechanics

|2 Number of superconducting charge carriers
per unit volume

P* Complex conjugate of ¥

q* Effective charge of charge carriers

m* Effective mass of charge carriers

h Planck’s constant divided by 2 =

A Magnetic potential vector

B Total magnetic field

b Current distribution

F, Helmholtz free energy of superconducting state

F, Helmholtz free energy of normal state

AF F,-F,
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3.2.1 THE HELMHOLTZ FREE ENERGY FOR A SUPERCONDUCTOQR.

The Helmholtz free energy of a system is expressed as
F=U-TS ' (8.2.1)

where F, U, T and S represent the Helmholtz free energy, the potential
energy, the temperature and the entropy of the system respectively.

In the general vicinity of the transition or critical temperature for
a type I or II superconductor, the difference between the Helmholtz free
energy of the superconduéting and normal states of a conductor can be ap-

proximated as

1
2m*

AF=F,—F, = / dv{—a:¢|2+%/3|¢l4+ [(—ihV—q*A)¢[2+%B-H}
Y (3.2.2)
in S.I. units [20], where the qpant@ties a, B and 1 are defined in Table 1.
The first two terms represent a typical Landau expansion of the Helmholtz
free energy for a second order phése tra.nsition. The third tefm represents
the total momentum of the charge carrier. The —ikV term is analogous to
the dynamic (kinetic) momentum pf a quantum wave-like particle; the ¢*A
term represents the field momentum (31, p. 633; 21, pp. 105-108].

REMARK 3.2.1

A good example to illustrate quantum kinetic momentum is provided by a one-
dimensional particle in an infinitely deep energy well. The —:AV term in the
above functional is similar, in quantum theory, to the momentum of the particle
in the well.

Using the identities, B = p,H, and B = VxA, the last term of

(3.2.2), which represents the field energy, can be replaced by

1
24,

(VxA)® (3.2.3)
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In (3.2.3), the material’s magnetic permeability u, has been set to
o, the value of the permeability of free space. The justification for the
use of p, is that, in a superconductor, there is an almost total expulsion of
the magnetic field B from the interior of the superconductor. This effect is
called the Meissner effect. The B field will only penetrate a small distance
into the superconductor. This approximate penetration depth is called the
London penetration depth. For superconducting samples with dimensions
much larger than the London penetration depth, the contribution to F' by
the difference between pH and u,H is small and the substitution of p for u,
is justified (Ref. [21], p.89). This type of superconductor is referred to as a
bulk superconductor. Superconductors with macroscopic dimensions on the
order of or smaller than the London penetration depth should use y instead
of po. Only bulk superconductors are dealt with here.

Expanding AF in terms of ¥ and ¥* gives

. w2, 1, . )
AF = /V av{—apy* + 18(497)" + 5 (<ihVTY — " ATY)
(hVY* — *Av*) + i—(VxA)T(VxA)} (3.2.4)

The quantities ¥ and ¢* are both complex quantities and present no
mathematic difficulties when deriving a variational formulation of supercon-
ductivity, but they do cause numerical problems. If ¥ and ¥* are used as
independent variables in a numerical model, they require twice the amount
of memory to store because both a real and imaginary number must be
stored for each variable. A preferred numerical formulation will only contain
variables that are real. Luckily, the independent variables ¢ and ¥* can

be expressed in several different manners, all of which are mathematically
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equivalent. If we let ¥ equal ¥ g +17%s and ¢* equal ¥ — iy, where ¥yr and
4 represent the magnitudes of the real and imaginary parts respectively of
the old variables, and i the square root of —1, the memory storage problem
is solved and the new variables are real. This formulation was used in in
Ref. [32] for one-dimensional calculations. Although reasonable results for
most quantities were obtained, others lacked accuracy. Later, it was decided
to find a.n improved formulation. In the modified formulation, ¢ and %*
becomc;, [1|e’® and ||e™*= respectively, where |¢| is the modulus and = is
the phase angle of % and ¥*. These are the new independent variables used

in the functional AF. With these substitutions, (3.2.4) becomes

_ 2 lalt o L (p2oT
AF_/vdV{ alp|® + 181y +2m,(h V7|Vl

+ [P (:VTw - ¢*AT) (AVw — ¢*A)) (3.2.5)
+ 2310 (vxa)T(VxA)}

The first variation of AF with respect to |¢] is

2
saF(si) = [ avaipl{~2alel +28f - SVl
+ ‘;f—l(thw - ¢*AT) (AVw - q*A))} (3.2.6)

+ [ dl‘éhbl{z—iﬁ-vltﬁl}

The first variation of AF with respect to @ is

6AF(bw) = —/VdV‘Sw {V' (W (S:TV“'_ izhA»}
+/rdI‘6w {ﬁ- (|¢I2 (%Z;VW— znhA))}

(3.2.7)
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The first variation of AF with respect to A is

2

SAF(6A) = /; dVsAT {W (—%Vm + ‘;’—;TA) + #i (VxVxA)}
)1 .
+/rdI‘5A {#o (VxA x n)}
(3.2.8)

Comparison of the above equations with the Maxwell eqaution VxB = j

shows that the constitutive relation for a superconductor is

* *2
i o= | (;—fvw—fn*A) (3.2.9)

where j is now a function of A instead of E. Note that j and the constitutive
relation are already contained in the Euler equations and that j and A. are
not needed as separate variables to make the set of equations determinate.
The set of Euler equations obtained by the variation of AF is collec-
tively called the Ginzburg-Landau equations. They describe the behavior of
type I and II superconductors. In the London approximation, % is assumed
to be constant throughout the conductor volume. For this approximation,

equations (3.2.6) and (3.2.7) become zero and equation (3.2.8) becomes
2
SAF(6A) = / dVsAT {|¢|2%;A + 1 (VxVxA)} (3.2.10)
v Ho

This type of conductor is known as a London type superconductor. Type I su-
perconductors are commonly referred to as London superconductors because
1 is constant over the majority of the conductor volume and (3.2.10) can be
used to get a good approximation of the B field inside of the conductor.
For the Ginzburg-Landau bulk superconductor, ¥ becomes a con-

stant within the superconducting volume at the interior boundary. This
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means that |¢| is a constant there, and the interior boundary integral of
(3.2.6) is zero.

Although the curl of A has been defined, the divergence of A is
arbitrary. A common choice and the one used here is the London gauge,
V. A = 0, which is equivalent to the time-independent Lorentz gauge. For
this gauge choice, A must go to zero inside of a bulk superconductor (32,
p.12]. ¢ must also go to zero at the exterior free space/conductor boundary.
This reference shows that, with the London gauge, Vi also be zero at the
exterior boundary. This condition is equivalent to V3| being zero on the
exterior boundary. With this condition, the outer boundary integral of(3.2.6)
is also zero, and the boundary term disappears completely.

Because of the London gauge choice and the condition that || is
constant deep in the bulk layer, the Euler equation of (3.2.7) becomes, in the
bulk region, V2w = 0, requiring that V be a constant. The value of the
constant is determined by energy considerations. The term |[¢|/m*(AVw —
q"A) represents the net exchange of field momentum from the magnetic field
to the kinetic momentum of the charge carriers. Only in the boundary layer
is there an exchange of momentum and in the bulk of a superconductor this
term must be zero. Because A is zero in the interior of bulk superconductors,
Vo must also be zero or there will be an exchange of momentum. Therfore,
for the London gauge choice, @ is a constant [21, p.107]. This reduces the

number of independent variables from three to two. The correct augmented



functional for the generalized three-dimensional case is therefore

2, 14 4 L (3207 24", 7
aF, = [ av{-alf + 3ol + o (RTIWIVIN + I LSATA)

m#

+

2;0 (VxA)T(VxA) +X,(V-A)}

(3.2.11)

and its first variation is

s K2 ¢’ 7
6AF9=/VdV5|¢|{—2@|¢|+25|¢l - = Vil + 4l =A A}

m*

*2
+/ dVéAT{|¢|2q—-;A+—I—(VxVxA)+V,\g}
1% m Ho

+/rdr5AT{-l1;(VxAx ﬁ)+(-f1Ag)}

(3.2.12)

3.2.2 ONE-DIMENSIONAL SUPERCONDUCTORS.
For the one-dimensional Ginzburg-Landau superconductor that has
the same geometry as the linear conductor examined earlier in this chapter,

and no static charge density p, (3.2.11) reduces to

2
a8, = [ av{-apwP + 1siwtt + oz (2 (32)

Ao (3.2.13)
il + - (%) }

2u, \ Or




and the first variation is

§AF, = /V av || ~2al] + 28141

72 3|
-2 (5 ))+|¢| - (4.7}
1 /19 OA,;
‘/Vd"“z{z (:5; (r o
. aAz Ti
dP25Az{T-5;—} N

K2 Bhb!}
T'

T,

+ [ arasol{ 22

T

2q*2
))-wrL

A,}
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(3.2.14)

An illustration of the physical problem is shown in the lower portion of Figure

3.1.

For a London superconductor, ¢ is constant and (3.2.11) and (3.2.12)

become

AF9=/dV{
\'4

1
2p0

(

SAF, = - f dVA, {

T

0A

or

1

O

dl'26A, {

2
) + Wq*Ai}

10
(ra
0A,
or

(r

Eall

0A
or

ri

q

«2
z 2
))-wrLs

4.}

(3.2.15)

For both caSes; the only nonzero cérﬂponent of jisin the &, direction

and is

qt2

- __ 2
Jz = I"vbl m,..A

(3.2.16)
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3.2.3 EVALUATION OF MATERIAL PARAMETERS o AND 8.

The following is a summary of Tinkham’s derivation of a and S that
is presented in [21, pp.105-109]. Appropriate changes have been made to
convert this derivation from CGS units to SI units.

Deep within a superconductor, due to screening effects (the Meissner
effect), there are no fields or gradients. The last terms in the functional AF

drop out and the resulting equation is
AF = —afp|? + 18yl (3.2.17)

Near the second order phase transition, at the critical temperature 7, the

minimum value for the free energy occurs when

OAF _ 3

from which

[91? = [$eol® = % (3.2.19)

where [too|? is the value for the number density of superconducting charge
carriers deep within the conductor. Substituting |ts|? back into the preced-
ing equation for AF’, gives

2 a2 0(2

. - S -
AF = 5 +55 =35 (3.2.20)

When the critical field B, is applied, AF = —Bz /2u,. Because of this
condition, deep within a superconductor, where no gradients are present,

the following approximation to AF can be made

(3.2.21)
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The work, W, done in setting up a current distribution j [26] is
W=-1 / iTAdV (3.2.22)
1%

From the London theory [21, p. 84], with A.ss equal to the effective London

penetration depth, the following equation relating j and A can be derived

1
j=—-—5—A (3.2.23)

Holers

Substitution of this expression for j into the equation for W gives

/ ATAdV (3.2.24)
2“0 \es 1 |

7 From the Glnzburg-Landau theory [21, p. 107] the expression for the work

" done in setting up a current density j is defined as being
W= / L_ATAWool?dV (3.2.25)

If gradients of the order parameter are zero and there are no external fields
_ present, the two preceding equations are good approximations to W. Equat-

ing these two expressions for W gives

1 g’ 2 '
it ool (3:2.26)
Algebraic ma.mpula.txon produces
ool® = ETZT'*’; - _Z. (322
Sél\}ing for B Vgives" - =
Mi (3.2.28)

m*

B =«

il i— - —————_
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From before

2 2
B._« (3.2.29)
Ho B
Substitution for B finally yields
q*z 2 2 [ 4*4 214
a = m Bc)‘eff ﬂ = —n',f_2-Bc’\eff : (3230)

Allowing |1ho|? to equal the number of superconducting electron

pairs, it is seen that to be consistent with the London theory

g* = —2e = twice the electron charge

m* = 2m = twice the electron mass

3.3 SUMMARY.

In this chapter, the boundary conditions and the appropriate forms
of functionals based upon the four-potential method are determined for two
conductors with an unknown current density vector. The two types of con-
ductors considered are a normal linear conductor and a superconductor. The
only approximation made for the linear conductor is that both w and j be
step functions. The more general case where they are both C° continuous is
also discussed.

For the superconductor, the Ginzburg-Landau and London type su-
perconductors are discussed. The London type superconductor is shown to
be a simplification of the Ginzburg-Landau superconductor based upén the
assumption that the quantum mechanical variable ¢ becomes a constant

throughout the conductor volume.
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Also determined are the boundary conditions for the gauge choice
V- A = 0. This particular gauge choice reduces the number of independent
variables for the Ginzburg-Landau superconductor by one. The appropriate
expressions for the two material parameters for this conductor, « and j, are
also determined in this chapter.

The primary assumption in determining a functional for the Ginzburg-
Landau superconductor is that the conductor is near the phase transition
temperature, T.. Fortunately, there is some experimental support that the
Ginzburg-Landau theory is valid in a much wider range of temperature than
this narrow range if appropriate values for A ¢y and B, are used.

" In the next chapter, the thermal dependence of the two fuctionals
derived here is explored. A functional to predict thermal fields is also pre- -

sented.




CHAPTER IV

THERMAL EFFECTS

In previous chapters thermal effects in conductors have been ignored.
Thermal effects are quite important in superconductivity because they deter-
mine whether a conductor remains in the normal or superconducting state.
Thermal fields also affect the current density distribution in normal linear
conductors. In order to develop more accurate models of the EM fields, it
is therefore important that thermal effects be included in numerical models
of these fields. To accomodate the need to model the thermal fields, this
chapter presents the functionals for two simple time-independent thermal
field problems, the heat conduction and heat convection problems. These
sections summarize material presented in references [24] and (33, pp.90-92].

Typically, the EM material properties «, 3, ¢, 1 and w are temperature-
dependent. The dependence of € on thermal fields for conductors is mild and
is not addressed here. The thermal dependence of u is not discussed ei-
ther because little experimental data for the test material, extremely pure
aluminum, could be found. The only available datum found was a room tem-
perature value[34, p.627], and this value is approximately p,. If the value
of p remains within an order of magnitude of y, (i.e., ~ 10y,), the for-
mulations presented iﬁ this work experience no numerical difficulties if the
correct value for u is used. Scaling schemes to improve matrix condition

numbers and numerical stability are also presented in the sequel, and they
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can be implemented to cover cases where p deviates significantly from ..
For the above reasons, the values of p, and ¢, are substituted for u and ¢ in
all numerical formulations presented here. The temperature dependence of

a, B and « are discussed later in this chapter.

1 THERMAL FUNCTIONALS.

For a time-independent three-dimensional system, the functional

Qd=/vdv{§v:erv7—qT}—/Pdr{q-ﬁ:r} (4.1.1)

can be used to model the heat conduction problem [24, p.2]. Q represents
the heat flux through the boundary of the integration volume, 7 the temper-
ature, k the thermal conductivity tensor, and ¢ the heat generation rate per
unit volume For the t1me-1ndependent case, all of the above are functions
| only of the spatlal coordma,tes | o

| The first va.na,tlon of the above equa.tlon with respect to the inde-

| pepdent variable T is
6Qq = / dV§T {V - (kVT) - g} + / dléTh - {kVT — Q} (4.1.2)

7 For hnear Vconduictmg medla, the heat generatlon per un1t volume
7 :depends upon the current dens1ty _] a.nd the re51st1v1ty of the matenal w.
TiBoth k and w for a materxaliafe funct1ons of T but for the purposes of this
formulation, they are treated as functions of the space coordinates. When the

ﬁmte element solution process is d1scussed this assumptlon will be treated in

a more complete manner. For now, 1t is assumed that w is a functlon of the
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space coordinates and the appropriate value of ¢ for the time-independent

linear conductor is [35, p.117]
§=wj-j (4.1.3)

For the case of convection heat transfer, the heat flux across a boundary may
be expressed as [24, p.4]
Q=h(7.-7) (4.1.4)

where h is the heat-transfer coefficient tensor, which is only a function of
the spatial coordinates, and 7 is the known free-stream temperature. The

associated variational functional is

Q, = / drTd - {h(Too - 1T) - Q) (4.15)
T
whose first variation is

5Qy = / dT6Th - {h(Too — T) - Q} (4.1.6)
T

4.1.1 ONE-DIMENSIONAL THERMAL FUNCTIONALS.

For the one dimensional case, the same geometry as that of previous
chapters is used. An illustration of the thermal portion of the problem is
shown in Figure 4.1. Again there is a long cylindrical conductor that extends
to +oo in the &, direction, the longitudinal axis of the conductor coincides
with that of &, axis, and the conductor carries a steady current I. Due
to symmetry, there is no variation of 7 in the &, and &, directions. The

functional 24 becomes

Qd=/vdV{%k (%) —Twj; } / dl'rQ,. 7T

(4.1.7)
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where % is the thermal conductivity, and like w is a function of r. Q; is the

heat flux in the radial direction &,. The first variation of (4.1.7) is

59,1 = —/ dVéT {1 9 (kTQ'T—) +QJ]3} + dr25T7' {k% - Qr}
r»

7

ror or r
(4.1.8)
The one dimensional heat convection functional is

Q= [ dT2Tr {heonv (3T0 = T) — Q:} (4.1.9)

T T

where hcony is the convection coefficient. The first variation is

6Q, = dT26Tr {heonv (Too = T) — (4.1.10)

T, r:

For the Euler equation of (4.1.8), integrating with respect to r once
gives

kr— = - /w_yzrdr + G (4.1.11)

and integration with respect to r twice gives

_ 1 .2 1oep o
T= —/ e (/wy;dr) dr +C; / krdr +C, (4.1.12)

7 where C1 and Cg are consta.nts of mtegratmn
_ A premise to. the ana1y51s of the heat conductlon problem presented
i here is thac k varies slowly across the domain of 1ntegrat10n i.e., between r;
and T Th.‘lS premlse will be true if the ﬁmte elements that are used in the

heat conductlon a.nalysm can be made small enough to model the temperature

distribution within the conductor adequately. The only hrmtj on the size of
the elements is machine accuracy. For the cases where the size of the element

is smaller than machine accuracy, scaling schemes can be employed to move
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Figure 4.1: Physical Problem: One-dimensional conductor generating a heat-
ing load.
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finite element solutions back into the machine’s range. So, theoretically at
least, the assumption that k varies slowly across an element’s domain is a
valici assumption. This assumption proves to be true for the cases that are
presented later in this work. If k varies slowly, it can be approximated by a

linear interpolation across an element. This interpolation is

p— k
i R S ki + Ak, (4.1.13)

k=ki+7‘j—r,’ AT

where k; and k; are the values of k£ at the inner and outer boundaries of
integration respectively.

In the previous chapter, it is assumed that over elements (between
boundary limiﬁs), that w and j, are agproﬁrﬁaiéa as step functions for a lin-
ear conductor. That assumption is made again here. With this assumption,
w and j, become constants over the range of integration of (4.1.12). Sub-
stituting (4.1.13) into (4.1.12), and using the above assumption of constant
current density and ?esistivity, integration of (4.1.12) provides

-2 2
_wj; (rAr  kilr B 1 rAr
7= (Ak Ak? h‘(k'+ &) ) tan Ay ar) T4

(4.1.14)

where In represents the natural logarithm of the argument.

If w is allowed to go to zero, as in a superconductor, (4.1.14) becomes

1 TAr
T =C1-Eln (m) +C, (4.1.15)

For this solution to remain bounded as r; goes to zero, C; must be zero.
~Now 7 is an undetermined constant, C, at 7;. This provides an important
boundary condition for any cylindrical heat conduction problem that has

r; equal to zero, this boundary condition being that 87/ 37"] o equal zero.
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Referring to (4.1.8), the interior boundary integral, with C; substituted for
T shows that
oT aC,

Q, = k—BT = kW =0 (4.1.16)

Consequently, the heat flux and the temperature gradient at r =0 vanish if
the solution of 7 is to remain bounded.

Letting r; now equal an arbitrary interior point of the conductor, 77,
the exterior boundary integral of(4.1.8) also disappears for the case of w equal
to zero. To find the 7T distribution, another arbitrary point, 73, between 7,
and the conductor/free space boundary is chosen. The expressions, (4.1.11)
and (4.1.15), derived from the heat conduction variational principle, are also
used again. At ry, it is already known that 37 /Or is zero. Using (4.1.11),
it is found that C; again equals zero and using (4.1.15) determines that 7
again equals an arbitrary constant. This constant must be the same as that
derived for the case where r varied between zero and r; in order to satisfy
the C ° continuity of 7 in the variational functional as well as the boundary
conditions imposed by the first variation of that functional. Because r; and
T3 are arbitrary, this ;equires for the case of zero resistivity that 7 become
a single constant over the domain of the conductor.

This constant is determined by the use of equations (4.1.8) and

(4.1.10). The former states
Qr=k——=0 (4.1.17)
Using this information, (4.1.10) gives

T =T (4.1.18)
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where T, and 7T, represent the surface temperature and the temperature of
the cooling fluid outside of the convection cooling boundary layer respec-
tively. This gives the final result, when w = 0 the temperature distribution
within a conductor is the constant 7o, and also that the thermal properties
k and h.ony need not be known.

For the more generﬂ case of a nonzero w, equations (4.1.8) and
(4.1.10) are used again to find the temperature distribution 7. For this case,
(4.1.11) must also be used. It is assumed here that r; is zero and r; is the

conductor radius, r.. Equation (4.1.11) then gives

krc% = -/0 cwjfrdr - | (41.19)

where r is the conductor’s radius. Combining this result with the boundary

integral of (4.1.8) gives -

1
Qr =—— wjlrdr (4.1.20)

Te Jo
Using this result and (4.1.10) gives the following equation

1

hCOﬂUrC

T, = / wilrdr +Too (4.1.21)
. .

At the interior boundary, r; is equal to zero and the value of C; of equation
(4.1.12) is zero. The value for C; can also be determined to be equal to 7.

The temperature distribution is now

T(r) = —/ % (/ wjfrdr) dr+7, (4.1.22)
0 0

REMARK 4.1.1 o

Strictly speaking, the application of the equation (4.1.15) for 7 to the supercon-
ductors presented in this work is only approximate. For these superconductors j
is a function of A and |¢], both of which are C° continuous. This makes j C°
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continuous, and the integration of the first term in (4.1.11) incorrect because j is
assumed to be C~! continuous there. However, because w is a constant and equal
to zero for a superconductor, the first term of (4.1.11) disappears, and integration
of the remaining terms gives the previous result, equation (4.1.15). -

4.2 VALUES FOR THE THERMAL PARAMFETERS k AND heoay.

The first parameter discussed is the thermal conductivity & of a linear
conductor. The thermal conductivity of a superconductor is not necessary
for the problems studied in this work and will not Be discussed. Reference
[36] gives a semi-empirical formula for the thermal conductivity of a material.

This formula is [36, p.6a]

1
k - m (4.2.1)

where

m=n)

o = o (n%”) Y (4.2.2)
For these formulas, k is given in watt cm™! 7! where 7~! is in degrees
Kelﬁn. The constants m, n, a” and S’ were determined by a curve fit to
experimental data. The values of these constants for well annealed, 99.9999%

pure aluminum with a residual resistivity of 0.000593 micro-ohms per cm and

a critical temperature of 1.196 degrees Kelvin are [36, p.9]

n=20 o' =48 x 1078
(4.2.3)
m = 2.61 B’ = .0245

These values are used to determine k for all of the examples presented here.
The thermal conductivity returned by this formula is accurate to within 3-
5% of experimental values in the temperature range of zero to fifteen degrees

Kelvin.
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On a microscopic level, all conductors are composed of a lattice
structure with tightly bound electrons and protons. Some loosely bound
electrons also exist and are called “free” electrons. There are two types of
lattice structure interactions, and they determine, in part, how quickly heat
may be transported through a conductor. This part is called the lattice
structure’s contribution to the material’s thermal conductivity or the ther-
mal conductivity of the lattice. The first of the two lattice interactions is
that due to quantum lattice vibrations called phonons, that can be treated
quantum-mechanically as both waves and particles, and collisions between
these quasi-particles. For this interaction, the thermra.lrconductivity is pro-
7 portional to 7 [31, pp.115-121], and is represented by the second term in the
denominator of (4.2.1). The second interaction is due to material imperfec-
tions, such as a copper ion in an aluminum lattice structure or imperfections
in the lattice structure itself, such as dislocations. In this second interaction,
the transport of both phonons and “free” electrons are being affected by an
imperfect lattice. The net result is that a particle is being scattered by the
lattice imperfection. For an essentially pure »monocrystaline structure, these
effects can be neglected. This assumption is made for the above aluminum
sample for k because of its high purity and because it has also been well
annealed to remove lattice imperfections.

The “free” electrons provide a third means of energy transport and
may either transport an electrical current, heat or both heat and a cur-
rent. The rate of transport is governed predominantly by electron-phonon
collisions. For a conductor, this is the dominant form of heat transport
and is called the electronic contribution. This contribution to the thermal

conductivity is called the electronic thermal conductivity. Electron-electron
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collisions also occur, but are so infrequent that they may be neglected here.
For the temperature range of interest, zero to fifteen degrees Kelvin, theory
predicts that the electronic thermal conductivity is proportional to T2 (37,
p.204]. The first term in the denominator of (4.2.1) represents the electronic
contribution to the thermal conductivity and illustrates the excellent match
of theory to reality for aluminum.

The second parameter necessary to the computational analysis of the
problems posed in this work is the hea‘t convection constant hcony. Typically,
type I and II superconductors are cooled by liquid helium [38, p.193]. When
liquid helium is used, the boundary conditions are not of simple convection
cooling, but of combined convection cooling and heat transport by thermal
conductivity. At the low temperatures necessary to induce superconductivity
in aluminum, liquid helium becomes a two phase fluid. One part of the fluid
behaves normally, and the other part becomes a viscosity free (resistanceless)
fluid called a superfluid. Not wishing to model the physics of the superfluid,
as the focus of the present work is to model thermally coupled superconductor
behavior, a simple, arbitrary heat convection boundary term was adopted.
For this boundary term, it is assumed that the conductor is in a normal
state, the current density j, the resistivity w, and the thermal conductivity &
are constants across the whole domain of the conductor, and the difference
between the surface temperature 7; and the cooling fluid does not drop below
one hundreth (.01) of a degree Kelvin.

The temperature of the cooling fluid 75, is known and, together with
the current I, is one of the two independent loading parameters that are
7 varied in the computational analysis of coupled phase-thermal-EM systems

presented in later chapters. The maximum values of I and 7; are used to
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choose the value of hcony. These values represent the state of the system
where the greatest amount of heat transfer occurs. The above choice of
state ensures that, by use of the formula for heony, presented below, heat is
always being removed from the conductor by the cooling fluid and that the
conductor never cools the fluid instead. To simplify the determination of
Reconv, an overall energy balance approach is used below (e.g., see [33, p.92].
In the steady state, or time-independent system, the heat energy prodﬁced
by the conductor must equa.l the amount of heat energy removed by the

coolmg ﬁmd For the one- dimensional conductor thls is

2:.’/ J / co:ujfrdrdz=27r7'c‘/ ’ heonv (’Z;—Too)dz (4.2.4)
z Jo FYREEE

For a one-dimensional conductor with constant current density, j, = I/ Trel.

Substituting this expression for j, into (4.2.4), and using all prior assump-

“tions, produces the following expression for Aconv.

heonv = 507(—27":—3WI2 (425)

For this equation, w is evaluated at 7; which equals 7 + .01. This choice

7 for w generates the largest p0551b1e amount of heat in the conductor for the

two loa,dmtr parameters

'Hl

T ERMAL PRQPERTIES OF' W,

Like the thermal conductivity, two pnmary mechanisms participate
to produce a resistance to EM energj 7transport For this type of energy
tra.nsport the electron-phonon interaction predominates again, but only
domlnates at hxgh temperatures (above ~ 20° K) ‘Unlike the thermal prob-

lem lattlce 1mperfectxons can contnbute enough to the resistance of EM
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energy transport that they must be accounted for. The first type of inter-
action is accounted for by the ideal resistivity of a material. The second
interaction is accounted for by the residual resistivity of the material. The

total resistivity is thus the sum of the residual and ideal resistivities
w=w;+w, (4.3.1)

where w; and w, are the ideal and residual resistivities respectively.

Usually, the residual resistivity is a property of the particular sample
and is determined by experiment. The value used in the numerical examples
contained herein is given at the beginning of the previous section. The
following discussion of ideal resistivity is a summary of material presented
in Refs. [37] and [39].

The ideal resistivity can be expressed as

w; =R (%) 5 Ts (-:;’i) (4.3.2)

where R is a material constant, 7 is the Debye temperature as determined

by resistance methods, and J; is

2°dz

\75.(:) = /0 RN (4.3.3)

This is the Bloch-Griineisen formula for the ideal resistivity of a material

[37, pp.189-190]. For materials at low temperatures, i.e., Tg/T > 1, the
upper bound on Js can be extended to infinity with little error. Integration

by parts of (4.3.3) with this new limit produces

5

e* —1

oo o0 4
Js (z) = — +5 / Y (4.3.4)
0 ef =1

0
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The first term evaluated at the limits is zero and the second term is 5! x Z(5)
where Z(n) represents the Riemann zeta function of argument n and 5!Z(5)
is approximately equal to 124.4. Equation (4.3.2) becomes

T 5
w; ~ 124.4R (-) (4.3.5)
Tr

It has been observed experimentally, that for low temperatures, w is propor-
tional to 73 [37, pp.190-192]. This validates the general behavior of (4.3.5).
For reasons too lengthy to be discussed here (see Ref. [37], pp.182-202),
(4.3.2) and (4.3.5) are only good approxrixﬁat'irbnrsr to the ideal resistivity of
a niateriai. To b}lng ‘the formula closer to eipé;imgnféi values, R can be
replaced by an espression quadratic in 7 [40, p.470]. Equation (4.3.2) now

becomes

5

where Cy, C; and C; are constants determined from experimental data.

43.1 VALUES OF CONSTANTS FOR BLOCH-GRUNEISEN FORMULA.

The value for 7; is documented as 395° K [39, p.100. 37, p.192]. The
- values for R or C"’,gl,i,?;ni CL were not found after an extensive literature
search. Some constants related to Co, C;, and C; were found in Ref. [40].
Rathéf than converting these constants, it was decided to do a curve fit of
the experimental data in the previously cited reference to determine the de-
sired constants. The software package Mathematica was implemented using

the “Fit” option. It was discovered that Cy, C;, and C; are not constants

but parameters dependent upon the annealing temperature, T4. Curve fits
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with these parameters assumed to be quadratic functions of 74 returned the

following formulas:
5Co (T4) = 0.0669523686343453 + 0.00006306135275167563 74
— 1.320389349752735 x 1077 7}
5C; (T4) = —0.001133598163601825 + 0.000006634622902885976 74
~ 7.731210566579611 x 10™° 72
'5C, (T4) = 0.000003186103199486918 — 1.840858520126625 x 107° T4

+ 2.147449451671961 x 10711 72
(4.3.7)

These empirical formulas agree within 5% when compared with the experi-
mental data of Ref. [40] over the range of 2.21-273.16° K. For the numerical
examples presented in later chapters, it is assumed that these values can be
used down to ~ 0° K with about the same accuracy. This assumption is
justified because experimental observation shows that in this temperature
range the residual resistivity is the dominant contribution to the total re-

sistivity. Five times the value of each constant is presented in the above

formulas. This removes a factor of five from the function Js and simplifies

of the calculation of J5. The determination of Js is discussed in the next
subsection. The value of the annealing temperature used for all numerical

experiments was 548.16° K.

4.3.2 NUMERICAL APPROXIMATION TO THE INTEGRAL 7s.
In order to obtain valid values for wj, it is also necessary to have a
valid numerical approximation to Js. Although the numerical results pre-

sented herein lie in the range where 7p/7 > 1, where the approximation of
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equation (4.3.2) is valid, in the interest of additional accuracy, Js is evalu-
ated numerically between its actual limits. The evaluation of J5 between its
actual limits also ensures valid results for w; should the solution procedure
inadvertently step into a range where 7./7 is no longer much greater than
one.

The range of interest for most of the the author’s applications of the
Bloch-Criineisen formula lies between absolute zero and about one hundred
degrees above absolute zero. In this range, numerical approximations to the
integral in (4.3.3) converges slowly. To improve the rate of convergence, an

equivalent expression is substituted that is composed of the difference of two

integrals. Formally, this expression is

z°dz

*75("’):/; F-Di-e
®© 25dz *® 22 dz
=/o (ez—l)(‘i—e-ﬂ’/x (e=—1)(d1—e-:>

The first integral, as noted before, is simply 5!Z[5], where Z[n] represents the

(4.3.8)

Riemann zeta function of order n. An approximation, good to sixteen deci-
mal places, as determined by the software package Mathematica for 5!Z[5],
is 124.4313306172044. This is the value used for the numerical experiments

contained in this work. Integration of (4.3.8) by parts produces
5 et oo 4
-9 / P
e —1|, . €e—1
4

= 512[5] - a —5[0

Ts (z) = 512[5) +

(4.3.9)

d
e —1 ef -1 ‘
The integral in the above equation is known as a Debye function. Abramowitz

and Stegun [41, p.998] give the asymptotic approximation to this integral as:

o L4 ad ot 4z 1222 24z 24
dz = —ne = 4.3.10
/;, -1 ’;e {n+n2+n3+n4+n5} (4.3.10)
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A thirty term series approximation was used in the numerical experiments
presented in this work to evaluate the Debye function. This number of terms
enabled the finite element coding to match the Mathematica software results
for w; to sixteen decimal places.

For the author’s numerical experiments, the temperature is evalu-
ated at the nodal points of each element. This is a consequence of the C°
continuity of the variational functionals presented earlier in this chapter. The
problem presented by this formulation is that w for each element is only c1
continuous. To overcome this difficulty, it was decided to evaluate w at each
node, and calculate the mean of the two returned values. This mean value
is used as the resistivity of the element. This ensures that a true mean for w
over the element is represented. If the mean temperature is used instead, the
resultant value for w does not represent a true mean because, at low tem-
peratures, w; is proportional to 7°. The mean value that is used assumes
that w; varies linearly over an element whereas the second does not. The
assumption of a linear variation here is consistent with the linear variation
of all other independent variables of variational functionals presented in this

work.

4.4 THERMAL DEPENDENCE OF a, 8. AND [v.[%

The thermal behavior of the time-independent superconductor is
governed by the material parameters o and §. For numerical purposes, it
was found that it was also necessary to know the thermal behavior of [¢eo .
Equation (3.2.30) of the previous chapter shows that a and 3 are both func-

tions of A.ss and B.. Doss gives the empirical thermal dependence of B, as
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[38, p.65]

B.(T) = B.(0) [1 - (%ﬂ (4.4.1)

He also gives the semi-empirical approximation for Acys as being [38, p.52]

4772
Aesf (T) = Aess (0) [1 - (%) ] (4.4.2)

where A,z (0) and B.(0) are semi-empirical constants that represent the
effective penetration depth and critical magnetic field when the temperature
of the system equals zero. For high-purity well-annealed aluminum, B, (0)
equals 99 gauss [42, p.5] and Az (0) is equal to 500 angétroms [42, p.39].
Substitution of (4.4.1) and (4.4.2) into (3.2.30) gives

‘1*2 2 2
a=m*BC(0) /\eff(O) [

1— (T/:rcf]

2
1+ {I/%) (4.4.3)

_ pog™* 2 s 1 ’
B = m*2 BC(O) Aesf (0) [_14-(7'/7;)2}

Equation (3.2.27) gives the relation that | |2 equals /. Substitution of

(4.4.3) into this equatioh gives the thermal dependence of |¥oo|?, which is:

luoq*2

*® 4 -
oo (T) 2 = ———5 Aess (0)2 [1 - (%) ] (4.4.4)

Note that as 7 approaches 7, the critical field goes to zero. The
physical interpfétation for this behavior is that any field at 7. causes a col-
lapse of the superconducting phase in a conductor. This corresponds to the
actual physics of a superconductor. The parameter [¥oo|? also goes to zero
as eﬁcpected. The parameter A ;s approaches infinity however. The physical
interpretation of this result is that the penetration of the magnetic field into

the conductor is complete, again in accordance with physical observation.
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4.5 SUMMARY.

In this chapter, the variational functionals that describe two meth-
ods of heat transfer, conduction and convection, are presented. Important
assumptions about these functionals are that the thermal conductivity k¥ and
the heat generation terms ¢, are functions of the spatial coordinates when
used with these functionals. The thermal dependence of k and w are also dis-
cussed, and appropriate numerical approximations for both parameters are
also presented. Physiéal constants necessa.fy to the determination of these
parameters for the test material used in this work, high purity, well-annealed
aluminum, are also given.

An important assumption about the determination of the value of w
for finite element analysis is also made. In a previous chapter, it was already
determined for the specific form of the four-potential formulation chosen for
numerical analysis that w be a step function across an element. In order to
evaluate w, the temperature 7 must be known. The thermal functionals of
this chapter returns two values of 7 for each element, leaving two choices
of how to determine an appropriate value of w for each element. The first
choice is to use the mean value of the two nodal temperétures to determine

the elemental w:

T(C) + T-(e)

2
The second choice is to evaluate w at both nodal temperatures and use the

mean of these two w’s for the elemental value of w:

W& =w, + % {wi(T;(e)) + wi(@(e))}
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The latter approach is used here because it more accurately represents the
mean value of w for an element.

In the discussion of the one-dimensional forms of the heat function-
als, it is shown that, for a one-dimensional steady state superconductor, the

temperature 7 is a constant across the domain of the conductor. This re-

‘sult is important for two reasons. First, knowledge of the values of k and

Reonw for the superconducting state are not necessary and computational ef-
fort need not be expended to determine them. Second, since 7 is const-a.nt
across the domain, no numerical analysis is required to find the temperature
distribution in the conductor.

With the completion of this chapter, all the necessary tools have
been dgveloped for the ﬁqit,e”g:lement treatment discussed in Chapters V-XIL.
These rchapteré showépéc‘lﬁéé.lly how to construct Asp‘e'cifié elements based on
the four-potential variational principle and their application to the solution

of théﬁnal, EM, and quantum phase change problems.ﬁ



CHAPTER V

THE CLEM1D FINITE ELEMENT
The first finite element example of the use of the four-potential
method for determining EM fields is the simplest. It is the example dis-
cussed in Section 2.3, an infinitely long, straight conductor of circuiar Cross
section which carries a known, time-independent, uniform current in the lon-
gitudinal direction. For comparison purposes, the analytical solutions of A4,

inside the conductor and in free space are discussed first.

5.1 ANALYTICAL SOLUTIONS TO THE TEST PROBLEM.

5.1.1 THE FREE SPACE MAGNETIC FIELD.

In Cartesian coordinates the radial component of the magnetic vec-
tor potential in free space can be calculated from the expression (see, e.g.,
[14,26,27,28,43])

Ho jz
=2 gy 1.
A:= vlrid (5.1.1)

where |r| is the distance between the elemental charge j. dV" and the péint in
space at which it is desired to find the field potential. The integral extends
over the volume containing charges. This expression serves equally well in
cylindrical coordinates. In fact, the transformation of z components is one

to one if the center of the coordinate systems coincide.
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As noted previously, the only non-vanishing component of the cur-
rent vector is j, dI'; where dI'; is the elemental cross sectional area of the
conductor r dr df and j, is the current density in the z direction. If d¢ repre-
sents the differential length of the wire, then j,dV = j.d[' dl =Idl = I dz
and |r| = V2 + z2. Substitution into (5.1.1) yields

[IQI dz
4‘T —00 r? + z2

A(r) = (5.1.2)

This integral diverges, but this difficulty can be overcome by taking the wire
to have a finite length 2L, symmetric with respect to the field point, that

is large with respect to its diameter. Integrating between —£ and +L gives

the result
[loI dz p.oI 2 2 +L
A (r)y= m (z +Vri+z )‘_c (5.1.3)

Expanding this equation in powers of r/L and retaining only first-order terms
gives
pol '
A, =-— In C 5.1.4
z ( on ) m+ ( )
where C1 is an arbitrary constant. For subsequent developments it is con-

venient to select C; = (ng /27r) lnry, where r; is the “truncatmn ‘radius” of

the finite element mesh in the rad1a1 dxrectlon. Then

(DR ()
e (B1)1(2) 51
With this normalization, A, =0atr=r,. ‘Taking the curl of A gives the

B field in cylindrical coordinates:

1
B, T38 " O 0
B=VxA={gg}= 94 04, L% (516
z 10(r4 SA 0
e -
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It is seen that the only non-vanishing component of the magnetic flux density

is
aAz ﬂOI

Ba = yng = - 67‘ = 2—7; (5.1.7)

This expression is called the law of Biot-Savart in the EM literature.

5.1.2 MAGNETIC FIELD WITHIN THE CONDUCTOR.

Again restricting our consideration to the static case, Maxwell’s

equations in their integral flux form give

fH-ds:fu'lB-ds=/j~ﬁch (5.1.8)
¢ c r

where C is a contour around the field point traversed counterclockwise with
an oriented differential arclength ds and i dl is the oriented surface element
inside the contour. The term for the electric field disappears in this analysis
because E = 0. From before, it is known that the right hand side of (5.1.8)
is equal to the normal component of the current that flows through the
cross sectional area evaluated by the integral. In the free space case, this is
the total current that flows through the conductor. But in the conductor the
amount of current is a function of the distance r from the center. Again usi.g
I to represent the total current carried by the conductor, and r. the radius
of the conductor, and assuming an uniform current aensit}’ jz = I/(xr?),

the right hand side of (5.1.8) becomes

. - } I 2
/J-nch= ]:dP1= B d]-‘l:I:z_ (519)
T Iy re Jry U

Evaluating the left hand side of the integral and solving for By gives:

_oplr

2
2rru~1Bg = I-r—z-, By (5.1.10)
T

- 2
z 2nrs
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Comparing this equation with (5.1.5), it is seen that if 4 = po then By is
continuous at the wire surface r = r. and has the value pol/(27r.). But if
i # po there is a jump (¢ — po)I/(277.) in Bs.

The magnetic potential A, within the conductor is easily computed
by integrating — By with respect to r:

pl r?
4rr?

A, = +C (5.1.11)

The value of C; is determined by matching (5.1.5) at r = r., since the

potential must be continuous. The result can be written as

I, r? Te
Az = '2? [5“ (1 - E) — Ho In (;:)] . (5112)

The preceding expressions (5.1.5),(5.1.12) for A, can be verified as being

correct by substituting them directly into the Euler equation of (2.3.11).

5.2 FINITE ELEMENT DISCRETIZATION.

5.2.1 CONSTRUCTING EM FINITE ELEMENTS.

To deal with this particular axisymmetric problem a two-node “line”
finite element is sufficient. This provides the C° continuity for A that the
variational formulation requires. In the following, individual elements and
element properties are indentified by the superscript (¢). The two element
end nodes are denoted by the subscripts 7 and 7. The magnetic potential A,

is interpolated over each element ‘as

A, =NAW (5.2.1)
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Here the row vector N contains the isoparametric finite element shape func-
tions for A.. The elements of N are only functions of the isoparametric
parameter £ which varies between -1 at node i and +1 at node 7. The shape

functions are

N=1(1—¢ 1+¢) (5.2.2)

The shape functions are functions of the spatial variable r and the defining

relation between r and N is

ri®) |
r=N { } = Nr® (5.2.3)

o

A(ze) contains the nodal values for A, and are only functions of the time t,

o _ [ A
AQ:{ ’23)} (5.2.4)

Substitution of these finite element assumptions into the previously derived

1.€.,

Lagrangian, Equation (2.3.9), and then into Equation (2.2.14), yields the

variational integral as the sum of elemental contributions R = L. R(®), where

T
RO = / dV(e){ SN ORA aNA£e>—A£°)Tj£=>} (5.2.3)
\4

(e) 2ule) or Or

The nodal values A{®) are constant with respect to time because this is a
steady state problem. Therefore, the integration with respect to ¢ disappears.

Taking the variation with respect to the element node values of A(:) gives

T
() _ @sa@T ] L ON"ON | (o) _NTi(e)
SR = | av §AS {“(e) — Al - N (5.2.6)

This can be written more simply as

K4 u = p® (5.2.7)
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where

T
Ku(e) _ dV(e){ 1 ON 3N} . u(e) =A(ze)

Vvie) p,(e) —37 ?51‘—
p® = [ av® {NTJ'§=>} (5.2.8)
vie)

Equation (5.2.7) is purposely written in a notation resembling the stiffness-
force equations of statics. Ku(e) represents a stiffness matrix derived from
a potential.energy variational formulation, u(®) the nodal displacements and
p(¢) represents the external force vector. This form clearly illustrates that so-
lution and assembly techniques developed for finite element mechanics prob-

lems can be used to solve four-potential based EM field problems.

5.2.2 APPLYING BOUNDARY CONDITIONS.

'The finite element mesh is necessarily terminated at a finite size,
which for this test problem is defined as the truncation radius r; alluded to
in Section 5.2. In order to make the boundary integrals of R vanish, it is
necessary to look at the boundary integrals of (2.3.11). In the finite element
formulation, the discretized version of these integrals is

dT,6 A (‘numel) {_1'_ 6Az} _ dT56A ('1) {LaAz}
Azj z;

PO poR (5.2.9)

F? T rz 0

where dT'; is again dfdz, and Azsl) aﬁd Azg-m‘""l) represent the nodal values
for A, at r = 0 and r = r, respectively and numel is the total number of
finite elements. Simple observation shows that the first boundary integral
vanishes at r equal to zero. To make the other term vanish. the nodal value

for A, at r equal to r; can be constrained to zero. This is the essential

boundary condition used for this particular problem.



17

5.3 NUMERICAL EXPERIMENTS.

5.3.1 THE FINITE ELEMENT MODEL.

The test problem consists of a wire conductor of radius r. trans-
porting a unit current density. For this problem, the finite element mesh
is completely defined by specifying the radial node coordinates for each ele-
(&) () (e (e)

;=rn and ry =T, If the mesh contains Ny:re €lements

ment e as r ]

inside the conductor, those elements are numbered e = 1,2, ... Nyire and
nodes are numbered n = 1,2, ... Nyire + 1 starting from the conductor
center outwards. The first node (n = 1) is at the conductor center r = 0
and node n = Nyre + 1 is placed at the conductor boundary r = r.. The
mesh is then continued with Ny, elements into free space to give a total of
Nuire + Nfree + 1 nodes and Nyire + Nyree elements. This type of mesh for
EM field simulation is unique to four-potential based numerical methods. A
single node is needed at material interfaces to model fields as opposed to the
double nodes of field based simulations.

For‘the calculation of the element stiffness and force vectors, the
material permeability ¢ and current density j. are uniform over the element.

Analytical integration over the element geometry gives

(2r§c) + r§.°))
(rgc) + 2r§°))

(e)

' (e) | 1

ule) _ prm 1 -1 (e) _ = j(e) ) 6

K= [—1 1]  PU=T (5:3.1)
6

where rsf,) =1 (r(e) + rg-c)) is the mean radius of the element and I(¢) =

2 \Ti
rg-e) —r{®) the element radial length. For the test example, u(®) is a constant

inside the conductor whereas outside, u{®) is assumed to be unity. For the

analytical solution of Section 5.1.1, this requires that u, be replaced by one.
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The longitudinal curent density is j, = I/(wr2) inside the conductor whereas
outside j, vanishes.

The master stiffness matrix and force vector are assembled following
standard finite element techniques. The only essential boundary condition
requires setting the nodal potential on the truncation boundary to zero, as
explained in Section 5.2.2. The modified master equations are processed by
a conventional symmetric solver, which provided the value of the magnetic
potential at the mesh nodes. The magnetic flux density By, which is constant
over each element, is recovered in element by element fashion through the
simple finite element approximation

(
04, | _ON (o _ A0~ 47

() _ _04: _
By = or or % 1(e)

(5.3.2)

This value was assigned to the center of each element e for plotting purposes,

although it is a step function due to its C~! continuity.

5.3.2 NUMERICAL RESULTS. 7

" The numerical results shown in Flgures 5.1 thi'oughv5.6 pertain to a
unit-radius conductor (r. = 1), with the external mesh truncated at r, = 5.
The element radial lengths, 1(¢), were kept constant and equal to .25, which
~ corresponds to four internal and sixteen external elements. -

" The computed values of the potential A, are compared with the
analytical solutions of Sections 1.1.1 and 1.1.2. As can be seen, the agreement
between analytical and FE values is excellent. The comparison between

computed values of the magnetic flux density Bg shows excellent agreement
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except for the last element near the wire center, at which point the FE
approximation (5.3.1) loses accuracy.

Figures 5.1, 5.3, and 5.5 are for the case where pyire was 10.0, and
Figures 5.2, 5.4, and 5.6 are for the case in which gyire Was one, that is, the
same as the space surrounding the wire. Figures 5.1 and 5.2 show computed
and analytical magnetic potentials. The slope discontinuity at r = 1 in
Figure 5.1 and the jumﬁ in By in Figure 5.3 are a consequence of the change
in permeability p when crossing the conductor boundary. Figures .3 and 5.4
show the computed and analytical magnetic flux densities. Figures 5.5 and
5.6 show the computed and analytical magnetic flux densities in free space in
more detail. Note that Figures 5.5 and 5.6 for r > 1 are identical; this is the
expected result because as shown in Section 5.1.2, the free space magnetic
flux field depends only upon the current enclosed by a surface integral around
the wire and not on the details of the interior field distribution.

In summary, this finite element performed very accurately in the
example problem and converged, as expected, to the ana,lytica.ll solution as

the size of the elements decreased.
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5.4 SUMMARY.

In this chapter, the case of a simple one-dimensional infinite wire
is tested. To perform this test, the linear functional of Section 2.3 is dis-
cretized using standard FE techniques and appropriate boundary conditions
are determined. When the discretization is complete, it can be seen that the
governing equations are of a standard form and present no problems to the
use of standard FE solvers for linear systems.

Analytical solutions for the one-dimensional axisymmetric infinite
conductor are also derived in this chapter. Presented in this chapter are
graphs that compare results obtained from these analytical solutions and
from the FE model. The two solutions are in excellent agreement except at
the center of the conductor thereby validating the use of the four-potential
method for the determination of EM fields. Most importantly, the four-
potential method accurately predicts the B field across material interfaces
without any special boundary treatment, unlike the conventional field based
methods.

In the next chapter, the case of a two-dimensional problem with
similar boundary conditions and a known current density is explored. The
extension of the four-potential method to the two-dimensional case is done
to offer further proof of the validity of this method for EM field analysis. It
is also performed in order to show the effect of the Lorentz gauge, as the

gauge effects disappear in the one-dimensional steady-state example.






CHAPTER VI

THE CLEM2D FINITE ELEMENT

In this chapter, the four-potential FE element for axisymmetric two-
dimensional problems is developed. The new elements show the relatively
easy extension of the four-potential method through the use of Lagrange
multiplier adjunction to a broader class of problems. This element was tested
for two different geometries, a one-dimensional infinite conductor, and a
cylindrical “can” connected to two infinite feed wires on the top and bottom.

For both geometries, the current density j is known, and the static
charge density p is zero. The first geometry is the same as that of Chapter
IV, and is used to provide a check on the element calculations. The second
geometry is chosen to allow for a variation of B in more than one direction.
For this geometry, there is no analytical solution, but the results can be
examined to determine if they are physically realizable. For this reason, this
chapter begins with a discussion of the construction of the two-dimensional

axisymmetric finite element.

6.1 FINITE ELEMENT DISCRETIZATION.
In the previous chapter, the ungauged Lagrangian (2.2.13) is used
to construct one-dimensional axisymmetric finite elements. In the present

chapter, the four-potential method is extended to include two-dimensional
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axisymmetric problems. In doing so, the basic four-potential does not nec-
essarily satisfy the gauge condition (2.1.10) a priori and consequently, the

gauged form of the four-potential (2.2.15) must be used.

6.1.1 CONSTRUCTING EM FINITE ELEMENTS.

For the finite element discretization of the two-dimensional case,
quadrilateral axisymmetric elements defined by their geometry on the r-z
plane are constructed. These elements are isoparametric with corner node
points only. Additional construction details are provided in a later section
of this chapter.

In the following, individual elements and element properties are
again identified by the superscript ¢ in parentheses. The element nodes
are locally numbered i = 1,... n, where n is the number of corner nodes
(n=4for quadrilate;'als). The magnetic potential components, A,, Ag and

A, are interpolated over each element as
A, =NA® 4,=NAP 4,=NAP® (611

Here the row vector N contains the isoparametric quadrilateral shape func-
tions, which are only functions of the radial and longitudinal coordinates r
and z

N=<N}(r’:’f) NZ{(T’Z) N3(r,2) N4(T,Z)) (6.1.2)

and cplumn vectors As.c), Age), and A(f) contain the nodal values of A,, Ag
and A, respectively, which are oniy functions of the independent variable ¢
AL =(An(t) An(t) An(t) An(®)
A = (An(t) As(t) Ass(t) Aaa(?)) (6.1.3)

Al = (A,(1) A(t) An(t) An®))
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where, as in the one-dimensional time-independent case, the nodal values
for A(®), Aff) and A{Y become constants. Substitution of the above as-
sumptions into the previously derived Lagrangian, Equation (2.4.1), and
integration over the volume of the element yields the variational integral as

a sum of element contributions R = L. R(¢), where

1 ON ON ON ON
(¢) — (e) (e) _ (e) (e) _ (¢)
R dv { (( P —A; o —A] ) (8 —A] ER —A] )

@T (18 (. m\\[(18 (© , A(@TOINTAN ()
+ 4 (ra (N ))( (TN)>A T A Bz azA

- (JONAY +jONAP + /ONAL)
o (o) )

and V(¢) again denotes the volume of the element. Varying the above equa-

(6.1.4)

tion with respect to the element node values Af.‘) produces

1 (ONTON ONTHN
SR(SA (S _/ dv©sa©T () (e)
(A7) Ve bA- ple) \ 0z BzA 8z 37‘A

+ (:g (rNT)) NT; (=)}

(6.1.5)
Taking the variation of (6.1.4) with respect to Age) gives

(e)y _ (sa@T) 1 19 (. oT\\[(1l0 (e)
SR(SAS )_/V(Lf)v SAS {p(‘)<(r6r (rNT) ~—(rN) ) A}

(6.1.6)
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and taking the variation of (6.1.4) with respect to A{®) produces

T
(e)y _ (e) (e)T 1 ON* ON (e) _ aN ON (e)
SR(8A.7) = V(‘j;v 6A; { (e ( or Or A Br 0z 5z A

B )

(6.1.7)

The variation of (6.1.4) with respect to the last independent variable A, is

SR(6);) = /V Vs, ((l—a-(rN)) <°)+83—le(;)> (6.1.8)

- To facilitate a more compact formulation, the introduction of the following

matrix notation is used for the stiffness matrix

K® 4 4 0 K®4 4, K4,
(e) K®, 4 0 0
K¥® = o Ao 6.1.9
K@4 4 K94, (619
symm. 0

where

(e) = (e -
K44, dv (p(e) 0z Oz

Ve
T ,
© _ @ 1 ({10 (T 10 ON" N
K a0, —/v(cei)V o) ((r or (rN )) (7'6" )+ % %

. T
K@, = [ dvO), (1 0 (NT)> K 4,5, dv(e),\ N
! vie) ror bz

1 ONTHN 1 ONTON
(e) (e) " (e)
K44, (p(e) or 37‘) K4 ,/v((el)v (y(e) 9z Or

(6.1.10)

1 6NT6N)
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The following vector notation is also introduced to give a more compact

formulation.
A i
A(e j(e)
ul®) = (e p® = [ dVINT o) (6.1.11)
A} Vi) )z
Ag 0

Using the new notation, it is apparent that the finite element system can
be again written in the form of the stiffness-force equations of statics,
Ku(e)u(‘) = p(¢), Assembling these equations in the usual manner will

produce the discrete finite element equations of magnetostatics, K¥u = p.

6.1.2 APPLYING BOUNDARY CONDITIONS.

In Section 5.2.2 it is seen that by constraining A, to be zero at r =
r:, the boundary integrals for §A; vanished. Examination of the boundary
integrals for 64, in the two-dimensional case, as shown earlier in Equation
(2.4.6), show that utilization of the one-dimensional constraint will again allow
both integrals over dI'; to vanish. The physical interpretation of this phe-
nomena is that at a large enough distance from any axisymmetric conductor,
the field should always be the same as that of a straight wire independent
of the conductor geometry. This will occur because at a sufficiently large
distance, any effects, such as the end effects of the “can” of the second test
example, will decay to zero.

Symmetry conditions also require that JA,/Or equal zero at r = 0.
This is most easily achieved by constraining 0A,/0z to zero at r = 0 because
OA,/Or = 8A,/0z there. Constraining A, at the axis to zero fulfills the

symmetry requirement. Also constraining A, to zero at z equal to the upper
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and lower mesh boundaries will make the boundary integrals of Equation
(2.2.2) disappear.

The application of these boundary conditions removes the rank de-
ficiencies of the assembled master stiffness matrix. They are not the only
boundary conditions that will work, as examination of Equations (2.4.2),
(2.4.5) and (2.4.6) show, but they are the easiest to derive, being based upon
simple physical and mathematical arguments. These are the boundary con-

ditions that are used for the two-dimensional examples presented herein.

6.2 NUMERICAL EXPERIMENTS.

6.2.1 THE FINITE ELEMENT MODEL.

The finite element formulation described in the previous section has
been applied to the solution of the two test examples described at the begin-
ning of this chapter. Both problems are treated with quadrilateral elements.
Each quadx‘ilatéral element has four corner points and oneiinterior node.
These nodes are defined by their radial and axial positions r§°) and zfe). At
each corner i, there are three degrees of freedom, namely A4,;, Ag;i, A;i. From
these values, the potential components are interpolated with the standard
bilinear shape functions, which provide the C° continuity required by the
variational formulation. The centroidal node carries no physical significance
and is used solely to provide the extra degree of freedom assigned to the
Lagrange multiplier /\g(e). Thus each quadrilateral element has 4 x 3+ 1 =
13 degrees of freedom.

For the calculation of the element stiffness and force vectors, it is

assumed that the permeability 1(®) and the current densities are uniform over
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each element. The desired stiffness matrix and force vector are calculated
by numerical quadrature using Gauss formulas. The portion associated with
the potentials is always evaluated with the 2x2 rule. On the other hand,

three different schemes were tried on the entries associated with A,:

Full Integration. The same 2x2 rule as for the potentials is used.
Selective Integration. A one-point rule is used for KE:,) A, and KE:B A"
Zero Integration. The effect of A, is ignored by omitting the integration of

the associated terms and placing ones on the diagonal. This numerical device

effectively forces Ay = 0, and thus “releases” the gauge constraint.

6.2.2 ASSEMBLY. SOLUTION AND FIELD RECOVERY.

The master stiffness matrix and force vector are assembled follow-
ing standard finite element techniques. The boundary conditions are set as
explained previously. The modified master equations modified for bound-
ary conditions are processed by a standard symmetric skyline solver, which
provides the value of the potentials at the mesh nodes.

The physical quantities of interest are not the potentials but the
magnetic flux density B. This is calculated by discretizing the curl of A.

Since 8A /88 = 0, the magnetic fields become, after discretization,

B, Sz Ao
By § =4 Al - GAl L (6.2.1)
B
z 1 8(rN , (e)
,7:7—%7%

The nodal values for B are obtained by evaluation at the Gauss point followed
by extrapolation to node locations. The average of these quantities is also

reported as the centroidal value. As discussed below this value is found to
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be more accurate than interelement-averaged node values. Consequently the
centroidal value is used to report fesults.

For both test problems, the magnetic permeability w8 = pyir. was
constant inside the conductor whereas outside it the free-space permeability
pl®) = u free Was assumed to be unity. The current densities were assumed
to be uniformly distributed and consequently were calculated by dividing
the assumed total current flowing through the conductor by the total cross-

sectional areas of the conductors.

6.2.3 PROBLEM 1: A CONDUCTING INFINITE WIRE.

The first test problem is identical to that reported in the previous
chapter with a one-dimensional axisymmetric discretization. As shown in
Figure 2.1, it consists of a wire conductor of radius r. transporting a total
current of I = 1 ampere in the z direction. This current was assumed to
be uniformly distributed over the wire cross section. For this problem one
layer of quadrilateral elements in the z direction, extending from z = 0
through z = d, was sufficient; here the distance d was chosen arbitrarily.
The radial direction is discretized with Nyire elements inside the wire and
Nre. €lements outside the wire in free space. The mesh is terminated at a
“truncation radius” r; 3> r. where the potential component A, is arbitrarily
set to zero. Other boundary conditions are A, = 0 on the nodes at r = 0,
z=0and z =d.

The results obtained with r; = 5rc, Nyire = 4 and Ngpee = 10 for
the potentials are identical to those reported in the previous chapter, thus
providing a check on the element calculations. The same results were also ob-

tained with the three integration schemes noted above for the A, term, which
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verifies that the Lorentz gauge constraint (2.1.10) is automatically satisfied
by the finite element shape function for one-dimensional magnetostatic fields.

The computed magnetic flux density By at node points was not as
accurate as could be expected, generally being too large, especially at r = 0.
The centroidal values, on the other hand, were considerably more accurate
as regards matching analytical results. Thus for the second problem field
values at the element centroids are reported. The extrapolation of B to
nodal locations is a disadvantage of the four-potential variational approach.
Field based formulations can compute the value of the B field directly at the

nodal locations while the four-potential method cannot.

6.2.4 PROBLEM 2: A CONDUCTING HOLLOW CAN.

The second test problem, shown in Figures 6.1 and 6.2, brings two-
dimensional features. It is a hollow conducting cylindrical “can” with infinite
feed wires connected to the center of its top and bottom faces. These wires
carry a total current of I = 1 ampere in the +z direction; this current
was assumed to be uniformly distributed over the varying cross sections it
traversed. For the ends of the can, it was assumed that the current flowed in
the +é, direction, forcing jg to be zero. For the areas where the feed wires
join the “can”, and the corners of the “can”, it was assumed that the current
turned ninety degrees and was uniformly distributed. This assumption is
unrealistic physically, but warranted for the mesh used in this test problem.
The mesh choice is discussed below. The wire radius 7. and the can wall
thicknesses were assumed to be identical.

Because of the symmetry of the problem it is sufficient to model only

the upper half z > 0. The results presented here were obtained by using a
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95 x 25 element mesh of square elements. Within this mesh, the wire as well
as the can walls were modeled with only one element across the radius or
thickness, respectively.

The regular mesh indeed represents an “overkill” for the free space
while it is insufficiently refined to capture field distribution details inside and
near the conducting material. This mesh was actually chosen to conform
to limitations of the three-dimensional plotting functions of the software
package Mathematica.

The problem was run using full, selective and zero integration
schemes for the A, freedoms. The magnetic permeability psr.. in the free
space outside the conducting material was chosen as unity. For the conduct-

‘ing material two different values for the permeability u = pwire Were tried:
1.0 and 10.0; the latter to check whether flux jump conditions were auto-
matically accominodated by the j;bt'enti'él:formulation. Selective results are
reported graplgcz’a;llrj;i ianirgures 6.3 thr;ugh 6.8. hFigures 6.3 and 6.4 show

the magnitude of By for puwire = Hfree = 1 obtained for the full and zero

sults in contour plot form. FxgurésG? a.nd 68 cofrespond to fwire = 10 and
show the magnitude of By from different viewing points. A discussion of the
results follows. '

The full integration scheme for A, performed well outside the con-
ducfor. Results were compéi;éd with those of the analytical solution for the
infinite straight wire (the first test problem) to determine whether they were
physically reasonable. As r becomes large compared to the can cross dimen-
sion (towards the outer radial edge of the mesh), the answers agreed. This

is the expected behavior, because as r goes to oo, the general axisymmetric
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problem should behave as an infinite straight conductor. As one moved to-
wards the top of the mesh, the solution again approached that of an infinite
wire as can be observed in Figures 6.3 through 6.8. This behavior is expected
because as we move parallel to the wire in the z direction, the effects of the
current in the can ends should tend to zero and the only far-field effects
should be from the total current. The results for the magnetic field within
the feed wire were not accurate as it did not vanish for r = 0; this behavior
was due to the use of only one element across the radius and the fact that
only centroidal values are reported as noted above.

The selective integration scheme gave answers of the same general
shape as the full integration scheme, but they only agreed to one or two
significant digits; these results are not shown here as they are hard to dis-
tinguish in plots. The zero integration scheme (which in fact releases the
Lorentz gauge coupling), gave solutions for the field that were larger than
expected at the conductor boundary and a physically unrealizable field in-
side of the “can”. This field grows sharply as the can axis is approached, as

shown in Figures 6.4 and 6.6.
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Figure 6.3: By vs. r and z for pyire = 1. Full integration scheme for A,.
Intersections of mesh represent element centroids.
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Figure 6.4: By vs. r and z for piyire = 1. Zero integration scheme for A,.
Intersections of mesh represent element centroids.
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Figure 6.5: Contour plot of Bg vs. 7 and 2 for pyire = 1. Full integration
scheme for A;. Numbers on axes represent the number of element

centroids traversed from the center of the “can”. Each element is

.02 x .02 square. All contours are equally spaced and range from

minumum to maximum values of the field.
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Figure 6.6: Contour plot of By vs. 7 and z for fiyire = 1.0. Zero integration
scheme for A;. Numbers on axes represent the number of element
centroids traversed from the center of the “can”. Each element is
.02 x .02 square. All contours are equally spaced and range from
minumum to maximum values of the field.
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Figure 6.7: By vs. 7 and z for pyire = 10. Full integration scheme for A,.
Intersections of mesh represent element centroids. Note sharp
field jumps on conductor surfaces.
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Figure 6.8: The same case as Figure 6.7 shown from a different viewing point
to emphasize how By fails to go to zero as r approaches zero

because of the coarse conductor discretization.
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6.3 SUMMARY.

The results of the CLEM2D finite element show that the four-
potential variational principle can be applied to a broader class of prob-
lems than the simple one-dimensional axisymmetric conductor. Although no
analytical solution is available for direct comparison, the physical behavior
of the numerical results strongly suggest that they are accurate. The only
point where the results are inaccurate are within the conductor itself. A finer
mesh grading within the conductor can solve this problem, as results of the
previous chapter illustrate. _

The only truly unrealistic assumption about the second test prob-
lem was the assumption of the current density distribution. A physical cur-
rent will in general not make a ninety degree turn and remain uniformly
distributed. To address this problem, the CUPLE series of elements was
developed. Given a known current I, these elements can determine the dis-

tribution of the current density j as well as the B and E fields. These finite

element models are the subject of the next chapter.



CHAPTER VII

THE CUPLE1D FINITE ELEMENT

In this chapter, the four-potential finite element for one-dimensional
problems with an unknown current density vector is developed and tested
for two examples. Both examples possess the same circular-wire geometry
shown in Figure 2.1, no static charge density (p = 0), and a known current
I in the positive z direction. In the first example, all elements have equal
conductivities. This example gives the same type of fields encountered in
Chapter V and is used to verify the accuracy of computed solutions. For
the second example, the element conductivities are allowed to differ. An
analytical solution to this problem exists and is compared with the numerical

solution.

7.1 ANALYTICAL SOLUTION TO THE TEST PROBLEM.

7.1.1 MAGNETIC FIELD WITHIN THE CONDUCTOR.

The Euler equation for §A. of Equation (3.1.11) states

I= dl'y 7, (7.1.1)
ry

This is the law of current conservation. For the examples presented here, it

is assumed that j. and w are simple step functions where w is known and j,
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is unknown. Using these assumptions, (7.1.1) becomes

numel
I= Z/ dre);, o (7.1.2)

()
where a superscript letter or number in parentheses denotes the element
number and numel is the total number of elements. The Euler equation for
kg of Equation (3.1.11) over each volume disappears because jﬁ‘) and w(®)
are step functions. If x is constrained at r = 0 and r = r., the set of surface
integrals for 6x4 of (3.1.11) do not vanish and produces the following set of

numel — 1 equations relating the ]z(e)’

5, Dw(®) = j (et (e+D) (7.1.3)

Insertion of (7.1.3) into (7.1.2) gives

numel

I = oj,® Z /

The above is used to determine j,(*), and this value is then used with (7.1.3)

-1
. dT{(®) ,(®) (1)) (7.1.4)

to solve for the remainder of the undetermined J RO

Equation (5.1.8) states

f p71B . ds = / j- fiedT (7.1.5)
r

For this example, u is a constant over the volume of the conductor. This
assumption is discussed at the beginning of Chapter IV. For the one dimen-
sional case, the contribution for each j,(®) using (7.1.5) is

Bo'® = gjzmr (7.1.6)
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where rEc) <r<g rge) and rge) and rgc) represent the inner and outer bound-
aries of j.¥. For r = rge), By'® is zero. Using the principle of linear

superposition, the total B field is

e—1
By = g- (Z {jz(") (rg-n) - rf"))} +jz(e) (r - rge))) rE‘) <r< rg-c)
- | (7.1.7)
The value of 4,®) is computed by integrating (7.1.6) over r and taking the

negative of the answer, which is

2
4.9 = —/Bodr = —#J'z(e)rz' + Co (7.1.8)

(e)

where C, is again an integration constant. For r;"’ equal to zero, Cy is chosen
as zero. To ensure the C° continuity specified for A; by the four-potential
variational principle, A,Ez) must equal A,gl) when both are evaluated at
rﬁ.l) = rgz)_ This requires that for Azg-l) = Az?), Co equal —u (1‘5-1))2 /4j;(1).
The value of Cy for each region where jﬁ‘) changes can be evaluated in a

similar manner. Doing so will give the following expression for A,

e (10 (6N e S e (6= )

rSe) <r< rg-e) (7.1.9)
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7.1.2 THE FREE SPACE MAGNETIC FIELD.
Using Equations (7.1.5) and (7.1.1), the expression for By in the free

space outside of the conductor is

By = £l (7.1.10)

A, = ——/Bgdr = —’;;Ilnr +Co (7.1.11)

Use of Equation (7.1.9) to determine Cy gives the following expression for 4.

A= ‘éé? (uoln (rlc) + u) (7.1.12)

The above result differs from the previous solution of (5.1.5) by a
cohrstrént. This isrnot; surprising becéﬂse, in the one-dimensional case, A is
not uniciﬁe and is determined solely by the boundary conditions. For the
ex%unple of Chapter V, A is constrained to zero at r,. For this example, A
is cqnstraiﬁed to zero at r equal to zéro._ For a one-dimensional bulk super-
conductor using therLondoz; g;auge,-A must vanish at r = 0 as discussed in
Section 3.2.1. Because of this boundary constraint on a superconductor, A
is also chosen as zero at r =0 for the one-dimensional current density pre-
dicting case. This choice is made so that numerical coding that implements
both elements to model the phase transition of a superconductor will require

oniy one set of boundary conditions for A. The consequences of this choice

are discussed in the subsection on applying boundary conditions.

7.2 FINITE ELEMENT DISCRETIZATION.
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7.2.1 CONSTRUCTING EM FINITE ELEMENTS.

To deal with this particular axisymmetric problem, the two-node
“line” finite element is again sufficient. Individual elements and their consti-
tutive properties are denoted by a superscript (¢). The element end nodes
are also denoted by the subscripts ¢ and j again. A, and &4 are interpolated

over each element as
A, =NA® k=Nl (7.2.1)

The row vector N contains the isoparametric shape functions for the inter-
polation of A, and k4. The elements of N are only functions of the spatial
coordinate r. A(ze) and nge) contain the nodal values for A, and x4 and are
only funcrions of the time ¢, and for the time-independent problem studied
here, become constants with respect to time. Substitution of these finite
element assumptions into the previously derived variational functional of
Equation {3.1.10) gives

1 TONT SN 1 2 (22 ‘ T
(e) _ (e) (e) (e) _ = _(e), (e)°:(e)° __ ;(e) 5 (e) T
A S {w)A - M

+@j@ T (19 NT PAQH (e)r](e)Nn()
ror ()

_ (€) :(e)
e (I /r<d>r 7 )

where dI'; and dI"; are again dfdz and rdrdf respectively. Variation with

respect to A(ze), nf,e), Ac and jﬁ") produces the following expression for the

0

(7.2.2)
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elemental stiffness matrix

FK®) 44 K(C)AJ. 0 0
e T e (C
K4 _ K9y K KO K3 7.2.3
| o K(");i 0 0 (723)
k9T o 0
L JAe -
where
1 ONTHN
K®,, = [ gy < T K@, =—[ dvONT (724
47 Jve pled or or | - 4 148 ( )
K = _ / P OROMOL K = [ ar{? (7.2.5)
Jji Vo) J r{®
KO, = [ qv©u© l_a_(,,N) (7.2.6)
J vie) 7'67'

The above expression for Ku(e) is not complete because it neglects contri-
butions to K© jx from the boundary integral over dl';. The discussion of
this contribution is deferred to the subsection devoted to the application of
boundary conditions. Following the notation of previoﬁs chapters, u(® is
expressed as |
A(e)
( )
u(e) = ( ) (7.2.7)
/\c
It is 1rnportant to note that A, isa global degree of freedom. This condition

must be met when the elemental matnces are assembled to form the master

stxﬁ'ness matnx

Ta.hng the second vanatlon of R( ) with respect to the mdependent

va.mables produces the tangent stlffness matrix K, which is identical to Ku(e)

This occurs because Ku is only a function of the radial coordinate r and
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not the independent variables. This fact is important when non-linear solu-
tion techniques, such as the corrective Newton-Raphson method, are used for
the thermally coupled superconducting problem. To use the non-linear solu-
tion techniques, the tangent stiffness matrix is required, and the equivalency
of Ku(e) and K means that K4 may be used in the normally conducting

portion with no modification.

7.2.2 APPLYING BOUNDARY CONDITIONS.

As mentioned in the previous subsection, Ku(e) is not complete be-
cause the boundary integral term over dT'; is not evaluated. The expanded

form of this term is

2rHrN, K,g(.l)w(l)j(l) —27HrN, Ko(,"“mel'\"l)w(numel) -(numel)
i F4 7 1z

(1)

s (numcl)
' Pl

(7.2.8)
where H is the height of the element, numel is the total number of elements,
N, and N, are the shape functions of N for the two-node “line” finite element

and the superscript terms in parentheses represent an element number again.

Taking the variation of(7.2.8) with respect to the independent variables m?),
95-""7"81), ] ;(,1) and jf.’""""’) and evaluating at the specified values for r givés

QWHrgl)énggl)w(l)jgl) — 9% H T.g""mel) 6K0-(i"um¢l)w(numel)jgnumel)
(7.2.9)
+27H TEI)KBSI)W(I)éjgl) —9%H T;_"umel)nog““mel)w(numel)éjgnumcl)

There remains in RS a volume term that contains x4 as an independent

variable. The variation of this term with respect to ;i and nge) produces

65K jng?) =0 (7.2.10)
T 2.
5§ K© 59 =0

z
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Evaluation of K¢ jx for a two-node element gives
K©;, = 2nHo® (—r{? £{) (7.2.11)

Using this equation, 6;$VK ) ;. k(? for e = 1 and e = numel is

6j£l)K§'i)"5(91) - 51-21) {21er(1) < —T'EI) 7'5‘1) ) E(;)}
i S (7.2.12)

— éjgnumel) {27er-(numel) ( _rz(numel) rgnumel) )n(onumel)}
Addition of the third and fourth terms of (7.2:9) to the above gives

5Kk = 651 {QWHw(l) (0 M) ng”}
6j£nume1)K§:umcl)K‘(enumel) (7213)

= jgnumel) {277Hw(numel) < _TSnumel) 0 > Rl(enumel)}

Evaluation of 6ng°)TK(e);I-; j£°) at e = 1 and e = numel and the addition of
" the first two terms of Equation (7.2.9) reproduces the transpose of the above
results.

These results have three consequences. The first is that for e = 1
and e = numel, zeros should be inserted in the appropriate positions of the
stiffness matrix to account for the effects of the boundary integral over I';.
Performirg this operation creates a rank deficiency in the master stiffness

ma'tr'i)i;.r A solution to this problem is to insert a one (1) on the diagonal

5951) and ngg-m‘m') to zero. This is easily accomplished and causes no ma-

jor difficuities for finite element analysis. Second, we now have a system

of numel — 1 equations for xk¢. The physical significance of this is that a

Wowoom o meh
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Lagrangian multiplier is assigned to each of the boundaries in the conduc-
tor where w may change, thereby ensuring the verification of the Maxwell
equation VXE = 0. Again, no difficulties ensue and the formulation still
matches the actual physics of the problem. Third, there are now numel —1
equations relating the numel degrees of freedom associated with the jge)’s.
- The latter consequence is the most important because it shows that the con-
straint ). is necessary to remove the rank deficiency of the master stiffness
matrix associated with the j{%’s.

As mentioned earlier, the boundary condition on A; has been

changed so that the interior node of the conductor is constrained instead

of the truncation node. The appropriate boundary integral of (3.1.11) is

- r OA r 0A
oa (22 _ [ g fz08)
'/1*2 {ﬂ a"}r, T, p Or

As assumed in Section 7.1.1 and at the beginning of Chapter IV, u is assumed

(7.2.14)

to be constant for the examples of this work. Equation (5.1.8) is then used

to produce the following result

oA _ I
or = 2nr

Hy=—pu (7.2.15)

A minimum amount of algebra and the above relation changes (7.2.14) to

- dI‘gtSAzi

=-—HI§A,
T, 27!‘ H

(7.2.16)

Te Te
where the first integral is again allowed to vanish at r = 0.
In Chapter V, the truncation node at r = r, is constrained to zero.

This will produce a reaction force at that node of magnitude H I because

the imposed constraint is an essential boundary condition. On the other
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hand, at the degree of freedom associated with Azgl) there is no boundary
force because the boundary integral vanishs there. In the case presented
in Chapter V, the reaction force at the last degree of freedom for A; was
not necessary for the analysis of the example problem. This information
is needed here for the determination of the new boundary forces. If 4, is
constrained to zero at r equal to zero, a reaction force of —H I is produced
at the degree of freedom associated with A,Sl). This situation is analogous
to changing the -end constraint for a one-dimensional bar with a point force
on the free end from one end to the other.

For this example, it is necessary to achieve the same loading that

(_numel)
j
This loading will produce the same B fields but different values for A. Again,

was exhibited for the example of Chapter V when A, was constrained.
it is easier to visualize the rational for the a:bove‘statement by again exam-
ining the example of a one-dimensional bar again. For a one-dimensional
bar, this would require that the same stresses be produced in the bar for
the different set of displacements produced by constraining first one end and
then the other. The validity of this comparison is shown by an examination
of (5.2.1). The expression for,Ku(e) is the same as that for a one-dimensional
FE “bar” element with a linearly varying cross-sectional area. Young’s mod-
ulus has been replaced by 1/4(®), and the cross-sectional area is denoted by
rgﬁ)'. For the forcihg vector p(‘;), we see that j, is a uniformly distributed
constant loading force.

For our problem, to maintain the same boundary forces that are
exhibited when Azg-m‘mel) is CQHSthm?d;”a rrga,rqtion fo;ce of —H I is added

at this degree of freedom, and another reaction force of HI is added at the
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first degree of freedom for A,. The second force is added to cancel the force
of —H I produced when AZEI) is constrained.

The above reaction forces can also be used for a one-dimensional
superconductor. The forces are the same because variation of the terms in
AF associated with A, will produce boundary integrals that are identical
to those in Equation (7.2.14). The use of (5.1.8) to determine an analytical
expression for these integrals will still apply because the integral on the
right hand side of (5.1.8) requires only the knowledge of the current I within
the conductor and not its distribution. The only limitation for the correct
determination of the boundary integral of (7.2.14) is that r > r..’

Finally, one more reaction force appears from the variation of Rf,e)
with respect to A.. This force has a magnitude of —I and is applied at the

degree of freedom associated with A.. Consequently, only three non-zero

values appear in the global external force vector p.

7.3 NUMERICAL EXPERIMENTS.

7.3.1 THE FINITE ELEMENT MODEL.

The finite element formulation derived in the previous section has
been applied to two test problems described below. Both problems are
treated with one-dimensional axisymmetric elements. Each of these “line”
elements has two end nodes and a common shared glodal node. These nodes
are defined by their axial positions rge) and rfie). Each end node has three
degrees of freedom. The first degree of freedom corresponds to n(;) and

the third degree of freedom corresponds to A{®. From these values, the

components of the magnetic potential and the Lagrangian multiplier x4 are
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interpolated with the standard linear shape functions, which provide the C°
continuity required by the variational formulation. The second degree of
freedom corresponds to j {¢) on the interior node while the exterior node has
no independent variable associated with it on the elemental level and is con-
sidered “empty”. This second degree of freedom has no physical significance
and jﬁ‘) is carried on the interior node so that an extra node per element
does not have to be injected to account for this independendent variable.
Tﬂs scheme is used because it matches the format of the STEP1D finite
clement which carries no injected interior nodes. The use of this scheme
makes downstream coupling of these elements, when modeling the complete,
coupled EM-thermal problem, more computationally efficient. All entries in
Ku(e) associated with the “empty” degree of freedom are assigned the value
of zero. The common shared global node is injected at the end of the finite
element mesh. It carries no physical significance and is used solely to provide
the extra degree of freedom assigned to A.. Consequently, each element has
2 x 3+ 1 = 7 degrees of freedom.

For the calculation of the element stiffnesses, it is assumed that the
permeability p, the resistivity w, the permittivity e and the current density
j. are constant over the element. The desired stiffness matrix is calculated
By numerical quadrature ﬁsing a two point Gauss rule. As mentioned at the
end of the preceding section, only three non-zero values appear in p and the

calculation of p{®) is not necessary.
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7.3.2 APPLYING BOUNDARY CONDITIONS.

The finite element mesh is necessarily terminated at a finite size.
For the two test problems, the outer radial end of the mesh is defined as the
truncation radius r = r;. The outer radial end of the conductor’s mesh is
defined as the wire radius r,. Since current is only carried in the conductor,
the degrees of freedom for j, between r. and r, are constrained to zero.
Similarly, the degrees of freedom for x¢ between r. and r; are also constrained

(1)

( (_numel)
i

and KQJ

to zero. The degrees of freedom corresponding to kg are
also constrained to zero as explained in Section 7.2.2. A; is constrained to

zero at r equal to zero and H I is injected into p at the degree of freedom

corresponding to A zgl). At the degrees of freedom corresponding to Azg-m‘md)
and A;, —HI and —T are injected into p. The use of the seven degrees of
freedom format for each finite element results in a rank deficiency of one
for the assembled master stiffness equations. This occurs because there are
only numel j {)s but the elemental degree of freedom format used produces
numel+1 equations when assembled. The last element only contributes zeros
to the master stiffness matrix for the second degree of freedom of the external

(7) node. To remove the rank deficiency, the second degree of freedom on

the outer node of the last element is constrained to zero.

7.3.3 ASSEMBLY. SOLUTION AND FIELD RECOVERY.

The master stiffness matrix is assembled following standard finite
(1)

element techniques. During the assembly, the elemental entries for x¢;"’ and
gg-m‘m’) are modified as discussed in Section 7.2.2. The external force vec-

tor is assembled by injecting its three non-zero entries as described in the
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previous section. The remainder of the boundary conditions are set as ex-
plained previously. The modified master equations, modified for boundary
conditions, are processed by a standard symmetric skyline solver, which pro-
vides the value of A, and x4 at the mesh nodes, A, at the injected node, and
the mean current density over each element.

As in previous chapters, the physical quantity of interest is the mag-
netic flux density Bg. The finite element approximation of Equation (5.3.2)
is used again. However, this time By is plotted as a step function to avoid
the extrapolations necessary to determine the value of By at r..

The ability of the potential formulation to model the discontinutiy in
the B field at a conductor/free space has already been established in previous
chapters. For this reason, in both test problems p and e were set equal to
one (1) inside the conductor and in the free space surrounding it. The first
test problem set all of the w(€)’s to one, and the second problem set each wle
to equal the inverse of the element number (:.e., o(¢) equaled the element

number).

734 PROBLEM 1: EQUAL CONDUCTIY

Trhre first test problem is identical to that reported in Chapter V and
possesseé a one-dimensional axisymmetric geometry. As shown in Figure 2.1,
it consists of a wire conductor of radius r, transporting a total current I =1
ampere in the positive z direction. The elements were given a runit thickness
in the z direction. The radial direction is discretized with Nyir. €lements
inside the wire and N{re. elements outside the wire in free space. The mesh
is truncated at a “truncation radius” re. Boundary conditions were set as

previously defined.
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The results obtained with r; = 2r., Nyire = 20, Nfr.e = 20 for the
potentials differed from those generated by the previous EM finite elements
of Chapter V by a constant, as expected. These results are shown in Figure
7.1. They illustrate what appears to be an almost exact matching of the
computed solution to the analytical solution. Analysis of the data values
shows that at r equal to zero the error is about 33 per cent. The error
declines rapidly to .2 per cent at r. and even further to .08 percent at r;.
This error is attributed to the relatively coarse mesh used for the e:;a:ﬁple
problem.

Figure 7.2 shows the results obtained for the computed current den-
sity. The result obtained is lower than the true value by less than one ten
thousandth of a percent, thus providing a check on the element calculations.
Because these results were so close to the exact solution, they were plotted
as a series of points, rather than a line, so that they could be distinguished
from the exact solution.

Figure 7.3 shows the results obtained for the By field. To evaluate
how closely the finite element solution matches the exact solution, it must
be observed where the analytical solution intersects the tops of the finite
element “steps”. For an exact matching, the analytical solution will intersect
the middle of the “step” tops. Although difficult to see, at r equal to zero,
to approximately r equal to .1, the exact solution moves right of center on
the “steps”. This means that the computed solution is larger than the exact
solution. The error in the computed solution ranges from 33 percent at the
center of the conductor to 4.6 percent at the conductor boundary. Outside
of the conductor, the error trailed off to .02 per cent. The high error at the

center of the conductor is due to the relatively coarse mesh discretization used
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for this problem. Finer meshes were tested and the finite element solution

converged to the exact solution as expected.

7.3.5 PROBLEM 2: DIFFERENT CONDUCTIVITIES.

This problem’s geometry and the values for ry, r¢, Nfree and Nyire
are identical to those used in Problem 1. The only difference is that the
element conductivity is set to the element number. The values obtained for
the current densities shown in Figure 7.4 are as accurate as those obtained
in the first test problem.

The computed potential shown in Figure 7.5 displays a behavior that
is different from that exhibited in the first example. The error ranges from
a maximum of about 33 per cent at r. to zero per cent at r equal to zero.
The error at r; is approximately 13.4 per cent. But the primary quantity of
interest i1s By, not A;.

The behavior of Bg is shown in Figure 7.6 and displays much less
absolute error than A,. The error at r equal to zero is about 33 per cent, at
r. .064 per cent and at r; .016 per cent. The reason for such better results
for By is that the rate of change of A, is the quantity of interest, and not its
magnitude. Referring again to Figure 7.5, it can be seen that the computed
value for the rate of change of A, appears to be close to the analytical value
for over half of the range of 7. This accounts for the good values of By that
occured for r > .2. Much of the error that occured in the computation of
A, can be attributed to the large change in w (= o~1) for this example.
From the first conducting element to the last, there occured a 1900 per cent
change in the value of w. Put into this context, the errors that did occur for

the finite element values of A, are reasonable. Several more examples with
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more slowly varying resistivities were performed to verify that this was the
source of the error. They are not presented here because Figure 7.3 illustrates
what occurs in the limiting case where the conductivity does not vary at all;
the analytical and finite element solutions converge. Although some error
remains at the center of the conductor, finer mesh discretizations can be
used to generate computed solutions that lie within a desired tolerance.

It is recognized that the error at the center of the conductor for
both test problems appears large. This is because the errc;r measured is the
absolute error. Other error estimators are available, but this topic is deferred
to Section 10.2.3 because of similar errors that occur for both the STEP1D
and LINT1D finite elements. As in the problems studied in this chapter, the
error measured is the absolute error and appears large. The discussion in
Section 10.2.3 shows that the error produced by using the STEP1D, LINT1D,
CUPLE1D and LET1D finite elements to solve EM and thermal problems is
within acceptable limits and that the absolute error alone is not always the

best measure of a computed solution’s accuracy.
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7.4 SUMMARY.

The results obtained in the previous two problems show that it is
possible to extend the four-potential formulation to the case where the cur-
rent density distribution is unknown. This is important since this means
that it is now possible to solve problems where material and geometric non-
linearities preclude a linear current distribution. It also means that whereas
before a knowledge of how the current was distributed within a conductor
was necessary, with this extension of the four-potential variational principle,
all that is needed is the total current I through the conductor, its material
properties ¢ and w, and the conductor geometry.

Having shown the validity of this extension of four-potential theory
to the prediction of electromagnetic quantities, one is now prepared to con-
struct a nonlinear conductor, the superconductor. This is the topic of the

next chapter.
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CHAPTER VIII

THE SUPERCONDUCTING FINITE ELEMENT

In this chapter, the four-potential formulations of the Ginzburg-
Landau and London type superconductors are discussed. Both elements
use for the ex;ample problem the geometry of the one-dimensional infinite
conductor shown in Figure 2.1. Because the London type superconductor is
only an approximation to the more exact Ginzburg-Landau equations, only
the computational results for the Ginzburg-Laundau superconductor are pre-
sented here. We restrict our consideration to the time-independent (static)
case.

For both superconductors, the total current I is known, j is unknown,
and the static charge density p is zero. Because the four-potential method has
shown in the past three chapters that it can easily model the conductor/free
space boundary discontinuity for By, only the region within the conductor
is modeled. The stiffness and tangent stiffness matrices for the Ginzburg-
Landau superconductor contain the independent variables |¢| and A and
therefore represent a set of non-linear equations. A short discussion of non-
linear solution techniques is included in this chapter as well as a discussion
on how |¢;| and A are scaled to reduce the ill-conditioning of the system of
nonlinear superconducting finite element equations.

No analytical solution is available for the chosen problem. However,
numerical results can be examined to determine if they are physically re-

alizable. As a second check on the accuracy of the results, the B field as
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determined by the finite element approximation using A can be compared
to the B field determined by j of the finite element formulation and Equa-
tion (7.1.5). Because no analytical solution is available, the first topic to be
discussed is the consfrﬁcéioﬁ of {He one-dimensional axisyminetric supercon-

ducting finite element.

8.1 FINITE ELEMENT DISCRETIZATION.

As mentioned in the introduction to this chapter, the discretization
of the Ginzburg-Landau equations results in a set of nonlinear equations. To
solve these equations, expressions for the residual r, the internal force vector
f, the external force vector p and the tangent stiffness matrix K are needed.
For this problem, f and r are determined by taking the first variation of the
governing functional, p by boundary integrals, and K by taking the second

variation of the gove}niﬁigz funcuonal The relationship between r,f and p is
r=f—p (8.1.1)

In this section, r, f and K are determined and in the discussion of the

‘boundary terms, p is determined.

8.1.1 CONSTRUCTING EM FINITE ELEMENTS.

For the finite element discretization of a one-dimensional supercon-
ductor, the two-node “line” element is again sufficient. Individual elements
are denoted by the superscript (e). As mentioned in Section 3.2.1, 4 may be
replaced by p, with little loss éf accuracy and this substitution is performed
for the superconducting ﬁﬁite elements derived here. The material parame-

ters @ and 3 are dependent upon 7. Also mentioned in Section 4.1 is that
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for the steady state heat conduction problem, 7 is a constant throughout a
superconductor. Consequently, the material parameters a, 3 and p, are the
same for every element and the superscript (e) is omitted for these quanti-
ties. The element end nodes are denoted by the subscripts 7 and j. A; and

|| are interpolated over each element as
A, = A® =NA®  |u| =8| = Ny (8.1.2)

where the symbols A(®) and |¥(®)] have been introduced to simplify notation
later. The row vector N contains the isoparametric shape functions for the
interpolation of A, and |¢|. The elements of N are only functions of the
spatial coordinate 7. A{®) and |1|(*) contain the nodal values of A, and |¢|
respectively, and are time-independent. Substitution of these finite element
assumptions into the previously derived variational functional of Equation
(3.2.13) gives

T ‘AT 2
AF) = V(d}’“’{—alrbl(e) NTN[$[®) + 5 (/) NTN||©)

e)TaN aNl¢|(e) A(C)TBN BNA(C)
or or Or %

©TNTNJp| A NTN A(;)}

(8.1.3)
Taking the first variation of AF g(°) gives a set of equations, which collectively
represent the internal force vector f for each finite element. The portion of
£(*) obtained by varying |1|(® is

£ = [ avO{-2aNTN|$[(© + 26]9'NTN|y|
Vie)

L ONTHN
e LTl

.2 (8.1.4)
+ q—;NTthl(‘) A(e)z}
m

m* or
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The portion of the internal force vector associated with A is

£, = / avell ON™ ON A<c)+ |w(e>| NTNA (8.1.5)
vie) /10 6 31‘

The total internal force for each element is now
. f(e)
£o) = {f(e)';”' } (8.1.6)

This expression applies to a Ginzburg-Landau superconductor. For a London
type superconductor |z!)|2 is constant and equal to |oo|2. Consequently, the
only nonzero portion of £(9) is £() 4,

Takmg the derivative of f(e) with respect to the mdependent vari-
ables produces the tangent stiffness matrix K¢ for each element. The ex-

pressmn for a szburg Landau superconductor is

K©, . KO, .,
K(c)=[ (e);zﬂz (e)A'M] .17)
K410 K%l
where , , N
T 2
. N ¢
K944, = [ dVl 1 2—+£—|\P(‘)|2NTN (8.1.8)
V(e po Or Or m*
=2
K® g1y = / dV("{2q—.A<°>|\p(=>|NTN} (8.1.9)
Vie) m
K 01 =

2 T
v ! [ —20+68/2@" + 2 A<°> NTN 4 2N ON
Ve m* or Or

(8.1.10)
For the London superconductor K(® is reduces to K A A, -
Examination of K(e)hl'ilwl and K9 4 4, shows that an internal in-

consistency can appear because both of the independent variables, |¢/| and
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A, and their derivatives use thé same shape functions. This inconsistency
can sometimes cause a “locking” problem. For the one-dimensional cases
considered here, this does not occur and is discussed further in Section 8.2.4.

For mechanical elements u(® is the displacement field in the ele-
ment. In non-linear finite elements, v{*) are the visible degrees of freedom.
The nodal degrees of freedom v(¢) cannot be solved for directly because the
internal forces are nonlinear functions of v(®), which in turn is a function of
the “loading parameter” (. The general technique to handle such nonlinear
problems is to convert the assembled residual force equations (8.1.0) to in-
cremental form by differentiating them with respect to a loading parameter
¢, te.,

—=——=— or Kw=gq (8.1.11)

where w is the set of incremental rates and q is the loading vector. w
and q represent the rate of change of v and p with respect to a loading
parameter (. The response v(({) is obtained by numerically integrating the
above equation in conjunction with Newton-Raphson iteration procedures
as described later in this chapter. The purpose of introducing these new
quantities here is that they are necessary for the topic of the next section,
the application of boundary conditions. In keeping with the new notation,

for a Ginzburg-Landau superconductor, v{¢) and w(®) are

TN

W = { AL } wo ol &

e ol
¢

(8.1.12)

For a London superconductor, v(¢) and w(®) are

() — [ AL®) (0 _ { 8AL)
v ={AP} W _{_ch_}  (8.1.13)



130

8.1.2 APPLYING BOUNDARY CONDITIONS.

The boundary conditions for A, are addressed first. As discussed
in the latter half of Section 7.2.2, the discrete boundary terms for the CU-
PLE1D finite element are the same as those of a one-dimensional supercon-
ductor. The only non-zero values for p,, occur at the degrees of freedom
corresponding to the first and last nodal displacements of A,. They both
have a magmtude of HI and differ in the direction of their apphcatlon In
the past I has been used to represent the tatal current load. It is now split

into two distinct parts to give
I=1I,+¢IL (8.1.14)

where I, represents the initial current and Ip the loading current. When
the loading parameter ¢ is zero, the only load upon the system results from
the initial current load. When ¢ e&uals one, by convention the system is

regarded as being fully loaded. Using the new notation, the forcing vector

Pa, 18

Pa, =L+ CIL)H (8.1.15)
0
-1

where 1 and —1 correspond to the first and last degrees of freedom for A

respectively, and the vertical dots represent a continuation of zeros over the

remaining degrees of freedom for A,. The expression for q4, is

1
0
9
Q= =22 = [ HS (8.1.16)
z 6( 0

-1
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The above expressions for q4, and p4, are valid for any one-dimensional
conductor where the first degree of freedom of A, is constrained to zero.

As discussed in Section 3.2.1, V|| on the boundaries is equal to
zero. Consequently, the boundary terms dependent upon |t| of (3.2.14) are
zero and make no contribution to p. The expressions for pj,; and qyy; are

therefore

and the total external force and loading vectors are

pP= {;’;l } q= {::;I } (8.1.18)

for a Ginzburg-Landau superconductor. To ensure that there are no su-
perconducting charge carriers in the free space surrounding the Ginzburg-
Landau superconductor, || is constrained to zero at r equal to r.. For a

London superconductor, p and q reduce to p4, and q,4, respectively.

8.2 NUMERICAL EXPERIMENTS.

The finite element formulation for a Ginzburg-Landau superconduc-
tor has been applied to the solution of a one-dimensional axisymmetric infi-
nite wire. Each element contains two end nodes and a common global node
thec is located at the truncation radius r;. These nodes are defined by their
radial positions rg") and rg-c). The glodal node carries an “empty” degree of
freedom and is used only to provide the same number of degrees of freedom as
contained in the CUPLELD finite element. Similarly, each end node contains
three degrees of freedom. The first and third degree of freedoms carry the

nodal values for || and A; respectively. The second degree of freedom is also
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“empty”. This choice provides for easier downstream coupling of the super
and normal conducting finite elements by reducing computational effort.
The computational effort is reduced because nodal connectivity and
freedom tables used to generate the diagonal location pointer array for the
skyline symmetric stored system of equations are only generated once. The
“empty” degree of freedom on each end node also allows for the easy addition
of the variable @ if the gauge choice used is not the London gauge. With the
“empty” degrees of freedom, each element carries seven degrees-of freedom
like the CUPLE1D finite element. The actual number of degrees of freedom
used per element is 2 x 2 = 4 degrees of freedom.
~ For the calculation of K, p, q and f the permeability 4 is set to u,,
as discussed in the introduction to Chapter IV. The values for a, § and [ 00|
for each element are determined by using the formulas presented in Section
4.4. The tangent stiffness matrix and internal force vector are calculated by

numerical quadrature using a two point Gauss formula.

8.2.1 APPLYING BOUNDARY CONDITIONS.

The finite element mesh is terminated at r¢, as in the linear conduc-
tor. To ensure that no superconducting flux can cross the conductor’s outer
ﬁ edge into free_sparce,’trﬂe degrees of freedom corresponding to || between r,
and r, are set to zero. At r = r., |¢| is also set to zero. By doing this, the
boundary terms of (3.2.14) vanish. At r = 0, A, is set to zero as required
by the London gauge choice. Any “empty” degrees of freedom are also con-
strained to zero to prevent rank deficiencies of the assembled master stiffness

matrix.
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82.2 ASSEMBLY AND SOLUTION.

The tangent stiffness and internal force vector are assembled follow-
ing standard finite element techniques. The tangent stiffness K is stored
using a symmetric skyline storage scheme, and then modified for boundary
conditions. The external force and loading vectors are inititalized to zero
and the two non-zero values for each are injected at the appropriate degrees
of freedom.

Solution Technique.

For linear finite elements, the displacements v can be solved for di-

rectly by inverting the stiffness matrix K¥ and multiplying it by the external

force vector p, t.e.,
-1
v=(x¥)"p (8.2.1)

The standard technique shown above to solve for v does not work for the
Ginzburg-Landau superconducting finite element because KY is a function
of || and A,. To begin our discussion of nonlinear solution techniques, the

residual equations are rewritten as
f-p = r = 0 (8.2.2)

where f and r represent the internal force and residual vectors respectively.
It can be seen that when the residual vector is zero, the solution vector v lies
upon an equilibrium curve or path called the response. The central idea of
non-linear solution techniques is to find a solution that lies upon a physically
correct equilibrium path and to then advance the solution along it. For
the cases examined in this work, the position along the equilibrium path is

determined by the loading parameter, also known as the control parameter, .
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The displacements v are also called the state variables because they represent
the state of the system along an equilibrium path. For the cases presented
here, an initial solution that lies upon the physically correct equilibrium path
is not always known in advance. For these cases, we are required to guess
a “neighboring” state from which to start an iterative process that takes us
to the path. The initial solution, or “guess”, is named the reference state of
the system.

For the Ginzburg-Landau superconaucting finite element (STEPlD),
it was found that the best choice for the reference state is that where A is set
to 0 and all unconstrained values of || are set to [tpo|. The value for ||
is determined from the formula presented in Section 4.4. This state closely
approximates a Gimbmg-L@dau superconductor with the total current I
and external B fields equal to zero, the difference for our choice occuring
primarily in the boundary layer. The true state can be closely approximated
by a step function for |¢| over the interior of the conductor with a magnitude
of |$oe|. However, the chosen reference state is close enough to the true state
that the same techniques used to advance the solution can also be used to
bring this reference state onto the desired equilibrium path.

To find how the solution vector v changes as the solution advances
along an equilibrium path, the partial of r with respect to the loading pa-

rameter ( is taken to give

T ovo¢  O¢ (8.2.3)
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The last equation shown above is known as the incremental rate equation.
K defines the tangent to the equilibrium path and is known as the tangent
stiffness matrix; w represents the rate of change of the solution vector along
the equilibrium path and is named the incremental velocity vector; and q is
the loading vector that represents the rate of change of the system’s external
forces as the external loads of the system are varied.

To advance the solution along an equilibrium path, the values of the
solution vector at the current known state are used to determine the tangent
stiffness matrix. The loading vector is also determined and the following

system of equations is solved to determine the incremental rates.
w=K q (8.2.4)

Numerical problems arise, however, if the current position of the solution
on the equilibrium path is a stationary (critical) point. At these points, K
is singular. For the STEP1D finite element, this occurs when AF), is zero.
There is no difference between the Helmholtz free energies for the supercon-
ducting and normal states of a conductor at this point. This point represents
a crossing of the equilibrium paths for the Helmholtz free energy functionals
of the normal and superconducting states and is called a bifurcation point.
If this point is reached or exceeded, because the free energies are equal, the
LET1D finite element is used. The LET1D formulation is not singular at
this point because it does not contain the quantum parameter |1|; conse-
quently it does not model the true state of the system at this point. The
trve state is a mixture of normal and superconducting phases that lies be-
yond the modeling ability of one-dimensional finite elements as it is in fact

a multidimensional problem.
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Assuming that a current value of v on the equilibrium path is known,
as a first step to obtaining another solution, an increment along the tangent
to the equilibrium path is taken. That is, the solution is moved Av in the
v direction and A( in the ¢ direction of the hyperspace defined by v and ¢.
The step is named the predictor step. New valués for v and ¢ are computed
at the point that lies at the end of the predictor step. A corrector procedure,
called the corrector step, is then invoked to iterate the solution back onto
tl;é equlilbnum péth.: The dlstances traversed in the v and ¢ directions for
each iteration are designated as d* and n* respectively, where superscript
k de51gnates the iteration number. The ethbnum path is reached when
r = 0. To ensure at each step n that the solution does not travel too far

from the equilibrium path, a distance [, is specified. The distance [, is
also used to ensuré that the distance aiong the equilibrium path traversed
is not too large. This dasta.nce is limited so that the solution procedure
does not accidentally step over a stationary point or move too far from the
equilibrium path. Detecting stationary points becomes important when they
a.ré branchihg or bifurcation points because it is desired that the solution
procedure follow the equilibrium path that matches the true physics of the
systeni. If thg solution procedure steps over one of these points, it may follow
a non—ph;éic;éi equilibrium path. |
7 The addition of the ;léngth constraint adds an extra equation to the

original system of equations:
|Asp| =l =¢c=0 (8.2.5)

where |Asy,| is an approximation to the distance s travelled on the equilib-

rium path. For the finite elements of this work, the initial values for v and
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¢ are computed using a Forward Euler scheme. The corrector step uses the
Conventional Newton-Raphson (CNR) method to iterate to a solution under
the arclength constraint (8.2.5). The formulas used for the forward Euler
integration and the arclength constraint are reproduced below. Subscripts n
represent the step number and superscripts k represent the ite.ration number.

Arclength Constraint

|Asy| = I = fi WL AV + Ala| = 1o = 0

fa=y/1+wlw, (8.2.6)

Foward Euler Method with Arclength Constraint

Cn+1 = Cn + ACn ACn = In/fn Sign (q:rl;wn)
Vo1 =Va+Av,  Av, =K:'q,A( (8.2.7)

=wW,Aln

To implement the Conventional Newton-Raphson technique, the
original equations for r must be augmented by the constraint equation ¢

and solved. This gives the linear system

B e

Because this augmented system is not symmetric, the two linear symmetric

systems below are solved for instead

Kd,=-r Kd,=q (8.2.9)
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to get
c+aTd,
=D d=d,+nd 2.
n 7+ a’d, + nd, (8.2.10)
which finally gives
vit=vi+d GP=(G+n (8:2.11)

Tterations are performed until the 2-norm of r is less than a specified toler-

ance 7. For cases where the 2-norm will not go below 7, a limit is set on

the maximum number of iterations by another input parameter. Because the

Newton-Raphson technique can'a.lso diverge instead of converge upon a solu-

tion, limits on the maximum value for the 2-norm of v are also specified. To

stop the solution procersvsi, another input parameter limits the maximum value

of ¢. When this value for ¢ is surpassed, the solution process is terminated.

The solution procedure may be summarized as follows:

(1) Initialize v and ( to the reference state.

(2) Solve for w.

(3) Update v and ¢ using the Forward Euler integration scheme

(4) Evaluate r and c at step n + 1 by using v,41 and Cn+1--

(5) Solve (829) for d, and d,.

(6) Using (8.2.10) with the va.llues for d, and d,, solve for n and d.

(7) Update v and ¢ using (8211) -

(8) Find the 2-norm of v

(9) If the maximum value for the 2-norﬁ of v or ( is exceeded, terminate
the solution procedure.

(10) Find the 2-norm of r and c.
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(11) If the 2-norm of (10) is less than or equal to 7, restart the solution
procedure over at step (2) until the desired value for ¢ is reached or
exceeded. If the 2-norm of (10) is greater than 7, go back to step (5)
and repeat the solution procedure until the 2-norm is less than or equal

to 7 or the maximum number of iterations is surpassed.

8.2.3 SCALING TECHNIQUES.

The solution procedure of the previous section is particularly sensi-
tive to heterogeneous physical dimensions in the solution vector v. In ad-
dition, off-diagonal terms of K may be either considerably larger or smaller
than the diagonal terms, giving K a high condition number. This means
that a small change in one degree of freedom may produce a large, non-

physical displacement at another degree of freedom. The STEP1D finite
| element solves the above problems by implementing several different scaling
techniques. The first technique gives the elements of v the same physical
dimensions. The second scaling makes off-diagonal terms of the same order
of magnitude as the diagonal terms. The third scaling is used to further
improve the condition number of K. Finally, the fourth scaling adjusts the
dimensions of v and ¢ in the solution hyperspace to improve convergence
rates and accuracy.

To perform the first, third and fourth scalings, the solution vector v

is scaled by a diagonal matrix S,
¥n=Suv (8.2.12)

where subscript n indicates either the first, third or fourth scaling and the

superposed tilde denotes a scaled quantity. If the stiffness-force equation is
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premultiplied by S;! and the scaled form of v is substituted, the results are

STIKYsS;'v =S 'p
(8.2.13)

~ U . -
Kv=p
~ U - . .
where K and p are the scaled versions of K" and p. The scaled versions of
other relevant quantities can be derived in a similar manner and are presented

below.

fF=S-r f=S;'f §=8;'q

w=51w Av=S;'Av K=S;'KS;'
(8.2.14)
|A5] = |WTSZAT + A¢| = |WwTAV + AC|/f

First Scaling.

The first scaling is performed element by element at an element level,
and is used to scale |1] and A, to have the same dimensions. Let L, M,
T and Q represent units of distance, mass, time and charge respectively.
It can be seen that A, has units of M L/TQ and |¢| has units of L—3/2,
Numerical experiments showed that letting the units of v be L~1/2 improved
the stability of the solution process. For this scaling, S; for each element is

expressed as

s 0 0 0 0 0 0
1 0 0o 0 0 O
s 0 0 0 0
S§°) = 5.52) 0 0 O (8.2.15)
1 0 O
symm. Ség) 0
! 1.
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»2 *
(&) _ ole) _ g (e) _ cle) — 1
511 = 544 = \/ o m* 533 66 h

where ones have been placed at the degrees of freedom corresponding to the
“empty” degrees of freedom. This allows for the inversion of s‘f). Both
scaling factors are constants over the domain of the superconductor and do
not affect the assembled scaled master stiffness equations if this scaling is
performed at the elemental level.

Second Scaling.

The second scaling is performed to make off diagonal elements of K
of the same order of magnitude as the diagonal elements. It also serves the
dual purpose of bringing steps in the v-{ hyperspace into a more reasonable
range. The second scaling is essentially a conversion of units from one system
to another. After performing the first scaling, the units of v are L~ where
L is measured in meters, the appropriate unit of length for the rationalized
MKS system of measurement. However, most of the material parameters
for a superconductor are of the order of about 1078 meters. To make the
order of magnitude of the off diagonal terms approximately the same as the
diagonal terms, it was observed that on an element level this could be done
by changing the units of length to micrometers (107° meters). To perform
this conversion, all of the nodal positions, rf‘) and rge), are multiplied by 10°. '
The permeability of free space has units of M L/ @Q? and is also multiplied by
105, whereas A has units of M L?/T and is multiplied by 10*2. The effective
penetration depth A.ss has units of L and is also multiplied by 10%. These
are the only quantities that are changed to perform the units conversion. The
remaining material parameters a, 8 and |t |* are calculated using the new

values for p, and A.s5 while the scaled value of A is used for calculating S,
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and VK(°). B has units of M/T Q and is not affected by this unit conversion,
so scaled quantities can be used “as is” for field recovery.
Third Scaling.

The third scaling is performed on the assembled tangent stiffness
matrix K. It is a simple diagonal scaling where nonzero elements of the
diagonal matrix VS3 are equal to the sgua.fe root Qf the absblﬁ,te value of the
corresponding diagonal element of K, i.e., Si; = [f{:,‘ For the “empty”
degrees of freedom, the diagonal elements of S; are set to one to give full rank
to the matrix so that it can be inverted. This is a common scaling technique
that will reduce the condition number of a symmetric positive definite matrix.
Although the constrained stiffness matrix for the superconductivity problem
is negative definite, this technique vggrrrkrs well here.

Fourth Scaling. -
The fourth scaling is also performed on a global level. Again a diag-

7 ronal matrix Sy is used, but this time all of the elements are the same. The

purpose of this scaling is to make A approximately equal to [,. To meet this
requirement, f must be approximately one. It is ensured with this require-
ment that no ma'ttexjrwhat theﬁyalue'of the product wT\y may be, the scaled
distance traversed a.longr the équilibrium path will be approximately equal
to tﬁ;e desired input distance /,. The ﬁlue for each élement of S4 that gave
the best results for the STEP1D finite element numerical examples presented

here was 10%.
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8.24 MESH GENERATION.

The superconductivity problem exhibits boundary layer characteris-
tics because most of the physics occur in a relatively narrow region close to
the conductor/free space boundary. The finite element mesh must have a
fine grading in this region to model superconductivity accurately. Eighteen
months of research and numerous numerical experiments have shown that
if the mesh grading there is inappropriate, the solution generated will suf-
fer accordingly. The problem most often encountered by poor mesh choices
was that of a high condition number for K. This generally causes the so-
lution method to fail because the 2-norm of the residual vector r and the
arclength constraint ¢ cannot be brought below a reasonable value for the
input tolerance 7. The solution “dances” around the v — ¢ hyperspace until
the maximum number of corrector iterations is reached or the 2-norm of v is
exceeded. In a few rare cases, with a poor mesh choice, the solution actually
did converge. These solutions were rarely of any value because the condition
number was estimated to be in the to range of 10° to 10'%! Another diffi-
culty encountered with a poor mesh choice is that || and A, will oscillate
around their equilibrium values. To solve these problems, it is necessary to
reexamine the theory of superconductivity.

In the previous discussion of superconductivity, the effective London
penetration depth )s; was introduced. The London penetration depth pro-
vides a measure of how far the B field penetrates into a superconductor from
the conductor/free space interface. This is significant because A.ss provides

a minimum depth for the boundary layer that is being modeled. This is the
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range over which A, should decay to approximately zero. It is also neces-
sary to know the range in which the other variable, ||, decays from its bulk
layer value of [¢oo| to zero. To accomplish this goal, the Ginzburg-Landau
equations must be examined once again. The following is an abstraction of
material presented in Reference[ 21}, pp. 111-114, and is used to determine
the range of decay of |¢|.

The variation of AF; for a one-dimensional superconductor in Carte-
sian coordinate space will produce the Euler equation

2Tl ol - gyl =0 (8.2.16)

where z is the one-dimensional spatial coordinate and A has been set equal

to zero because we are primarily interested in the behavior of [¢|. If the

normalized wave function ||, which equals |¢|/|#eo] is introduced, and
some algebra is performed, Equation (8.2.16) becomes

R? 9%

2m*a 0

jl” +lly = [ply =0 (8.2.17)

Linearizing this equation by setting ||y equal to 1+ b(z), where b(z) < 1,
gives the first order expansion of this equation as being

R 8%b(z) ., SN
oMo —5.12— = - (1 + b(I)) + (1 + 3b(z))

2 *
6;(;1:) = 21;_:2&6(::), b(z) ~ exp (ix\/2m*a/hz)
T

The first term of the equation shows that the decay of |¢|y is determined
by \/h2 /2m*a. This length is referred to as the Ginzburg-Landau coherence

(8.2.18)

length £(7). Appropriate substitutions from Chapter IV will give

1+(7/ T’:)z] : (8.2.19)

h -1 -1
§7)= WBC (0)Ac54(0) [T—_m;
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To avoid confusion with the isoparametric coordinate £, this length shall
always be referred to as (7). The dimensionless Ginzburg-Landau param-

eter k(7) is also introduced, which is the ratio of the two lengths {(7’) and

der (T
+(7)

where x(7) shall be used for this ratio to distinguish it from the Lagrange

-1

dess(T) _ Vg
€k

K(T) =

B.(0)A\2:£(0) (8.2.20)

multiplier vector k. A superconductor with x(7) < 1/ V2 is called a type I
superconductor, while a superconductor with (7)) > 1/ V2 is called a type
IT superconductor. Figure 8.1 shows the difference between £(7°) and Ay
for type I and II superconductors. '

For the particular case of high purity aluminum, x(0) ~ .1. This
makes it a type I superconductor and shows that the decay depth for [¢] is
approximately ten times the decay (iepth of A, where A sy is the approx-
imate decay depth for A,. Consequently, the boundary layer region to be
modeled must have a depth of at least 10 X A.sy to capture |¢|, furthermore
€(T) determines the size of the boundary layer mesh. For a type II super-
conductor A.s5(7) > &(T) and the size of the boundary mesh is determined
by Aesf(7). Numerical experiments confirm that for aluminum the mesh
choice of 10 x A.ss reduces the condition number of the system. Numerical
experiments also show that the mesh generated must be a function of 7
because A.rs and £(7") are both functions of 7. The results obtained with
the above mesh show realistic values for ||, but both |¢| and A. exhibit
oscillatory behavior. Expanding the boundary layer depth to 200 x Ay

caused the oscillations in |¢| to disappear. All elements generated in the
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Figﬁre 8.1: Differences betweeﬁ B, %, £(T) and ).z for type I and II super-

conductors.
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boundary layer were equal length elements, where the element length was
equal to the depth of the boundary layer divided by the number of boundary
layer elements Nyouna- The elements used to model the bulk layer were also
“regular”, their length being equal to (rc —200 X Aes¢(T))/Nouik, With Neuik
representing the number of bulk layer elements.

The oscillations are triggered by three different error sources. The
first one comes from the approximation that is made for (8.2.18). The
Ginzburg-Landau equations are linearized there to get an idea of the pen-
etration depth of the magnetic field. The coherence length is only a rough
approximation to the true penetration depth and not an exact one because
only the linearized system of equations has been solved and not the exact
system. The second source of error arises because the finite element model
is not exact. It merely tries to approximate the continuous case by discretiz-
ing the region of interest. The third source of error is that finite precision
mathematics are used when a solution to the discretized superconductor is
attempted. The solution procedure and the scaling procedures used all in-
troduce numerical error into the computed solution because of the machine’s
inability to resolve numbers beyond 16 significant numbers. The expansion
of the boundary layer helps to push the oscillations induced by the numerical
error of the solution and scaling techniques below machine limits and more
importantly, accurately captures the physics of the problem.

After the oscillations in || are removed, A; may still exhibit oscilla-
tions close to the conductor/free space boundary. It was thought that they
were induced by the mesh being too coarse for that region. Numerical exper-
iments showed that this was indeed the case. There é,re three methods that

can be used to resolve this problem. The first method consists of generating
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another boundary layer of regular elements near the conductor/free space
boundary. The second method involves changing the length of each element
so that the mesh is more finely graded at the conductor/free space boundary
than at the interior edge of the boundary layer. The third method is to
simply insert more elements into the boundary layer. All three methods add
the finite element approximation more accurate. The third method was us.d
for the examples here to expedite the research. This is the least compu-
tationally efficient of the three, but time constraints limited the author to
using this choice.

It is mentioned earlier in Section 8.1.1 that the use of the same shape
functions for 7thre calculation of || and A; and their derivatives can lead to
internal inconsistencies that can cause a “locking” problem. As the length of
the eleméqt l(f) goes to zero, the polynomial shapé function approximation
of the i@&epéndent variable tries to match lthe approximation of its first
derivative, whlch is a constant, when ‘locking” is present. This leads to the
oscillatory behavior described above. But as more and more nodal points are
added, i.e., more finite elements are added, oscillations of the independent
variable will still persist if “locking” is present. These oscillations disappear
for the STEPID finite element as the mesh is refined and show that “locking”
is not present for the one-dimensional cases studied here.

To summarize, the depth of the boundary layer mesh is determined
by the larger of Aess and &(T). This is the starting point for determining
the boundary layer depth. Numerical experiments are then used to expand

the boundary layer until oscillations of || disappear. Finally, additional
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elements are inserted into the boundary layer until oscillations of A, also

vanish.

8.2.5 FIELD RECOVERY.

The primary quantity of interest is again B. For this problem, there
is no analytical solution, but the results can be checked to determine if
they are physically correct. There are also two methods by which B can be
determined from the finite element solution. Comparison of the results of
these two methods determines if an internally consistent solution has been
reached.

The first method of determining the By field is the finite element
approximation of Equation(5.3.2). The second method uses Equation(3.2.16)
inserted into Equatition (7.1.5). The one dimensional form of this equation
that gives the value for By at the outer node of each element e is

o)

(&) o i 2 4
B = -4 {/rw ($|xp 2A )rdr} (8.2.21)

7 n=l

where the superscript letter in parentheses represents an element number.
The integration over each element is performed by numerical quadrature

using a two point Gauss rule.

8.2.6 TEST PROBLEM.

The test material used for this example was high purity aluminum.
The material constants a and 3 for each element were evaluated at 7 equal to |
zero degrees Kelvin using the formulas of Section 4.4. The permeability p of
each element was set to p, as discussed earlier in this chapter. The reference

state of v was set as described in Section 8.2.2. The mesh was discretized
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as desribed in Section 8.2.4 with a regular mesh of Npui: elements in the
region 0 > r > r. — 200).s5. Another regular mesh of Ny,una elements was
generated in the region ro —200A.5f 2 7 2 re. Nypulk and Nbaundrdenote
the number of elements in the bulk and boundary layers respectively. Npuix
a.nd Vbound were 2 and 98 for thls problem respectlvely Because the free-
space magnetm ﬁeld element has been va.hdated prev1ously, all elements were
within the conductor. The conductor radlus re was 1.15 x 10_4 The value
of I, was 5.0 alnperes and the value of I was 0.0 amperes for the results
presented here. The choice of these values ensures that an actual specified
current loadmg for results presentatlon was attained. The element has been
tested many txmes by loadmg from zero to full load a.nd has worked extremely
well The only problem that was expenenced was when the current loading
appoached a magnitude that was large enough to move the solution close to
the sts.tionary poiht. In this Wrregion,r Av and Al beca.me increé.singly smaller.
To rectify this problem, the coding was modified to ensure that the step size
at step n + 1 does not fall below an arbitrary value. If the step size became
too small, .9 x I, x I was added to I,, the reference state was reset, and
the solution proccedure was restarted at step n. The only disadvantage to
this scheme was determining the correct value of I at each step for output
purposes. This problem was easily circumvented by outputting the value for
I, when it changed, and the step where the change took place.

The main disadvantage with using the incremental solution methods
for resnitsipresentatlon was that the solutlon process. did not always stop at

the desxred full load value, but usua.lly exceed it by some fraction of the step

size I,,. This is a consequence of the solution procedure used, and is inherent

FRUDUAT A0 VT i mn
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in arclength schemes. By setting I equal to zero and I, equal to I, this
problem was bypassed here.

For the results presented below, the solution procedure required 9
iterations to converge, with the solution tolerance 7 being 4 X 10717, The
2-norm for r did not include the value for the constrained degree of freedom
of [14|. The value of r there ranged between 102 to 10~7 depending on how
close the finite elements came to modeling a zero slope for || at the conduc-
tor /free space boundary. To more a;:curately match this slope requirement,
all that was needed was a more refined mesh for this area. However the
results obtained were judged accurate enough for our purposes. Finally, the
estimated condition number of the system was 228.

Figures 8.2 and 8.3 show the results obtained for the normalized val-
ues of |1|° plotted over the whole conductor and the boundary layer of the
conductor respectively. If a London type superconductor had been modeled,
an exact step function would have been expected. Because aluminum is an
extreme type I sﬁperconductor, || should exhibit behavior that is almost
“step”-like. Figure 8.2 illustrates that the finite element does model phys-
ical behavior by returning values that élosely match a step function. The
boundary conditions are seen to match well in Figure 8.3 in that the slope of
|¥n|? is zero at the interior boundary -a'nd is very close to zero at the exterior
boundary.

Results for A, are shown in Figures 8.4 and 8.5. Figure 8.4 shows the
behavior over the whole mesh and Figure 8.5 the behavior in the boundary
layer. The physical behavior of A, should approximately be the opposite
of |#|. Over the bulk of the conductor, A; should be zero, and where ||
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decreases, the magnitude of A, should increase as kinetic momentum is ex-
changed for magnetic field momemtum. Figure 8.4 shows this expected phys-
ical behavior. Figure 8.5 shows this behavior in more detail, and illustrates
one difference in behavior between A, and |i]. The slope of A is zero at the
interior edge of the boundary layer, but nonzero at the exterior edge. This is
expected because the boundary conditions for A; and |¢| are different at the
exterior edge, the behavior of A, matching its expected physical behavior.

Figures 8.6 and 8.7 display the results for j, over the entire conductor
and the boundary layer respectively. The behavior of j; can best be described
by making an analogy to a similar problem in fluid mechanics. The medium
of the problem would be a large pool of water contained between two infinitely
long straight walls. For convenience, the walls are aligned so that one is on
our left side and the oéher on our right. To make the analogy correlate to the
results presentation, the left wall would be the center of the superconductor,
and the right wall would be the conductor/free space boundary. The bottom
of the pool would be shaped so that the density of water molecules matches
the density of the superconducting charge carriers. The walls and the bottom
of the pool would present no resistance to water flow. Assuming laminar flow,
a ;apidly moving stream of water is injected into the pool along the right wall.
For the EM problem, j, is analogous to the velocityr of the water molecules,
vy in the pool. Where the stream is injected, it is expected that a large,
rapid change in vy, would exist, which upon first examination would appear
to be a Dirac delta function.

This behavior is exactly matched by the velocities of the supercon-
ducting electron pairs of the finite element model, and is shown in Figure 8.6.

At the conductor/free space boundary, a Dirac delta-like “spike” appears for
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7z, which is zero otherwise. A closer examination of the fluid velocities for
the imagiﬁary example would reveal that v,, would rise rapidly on both sides
of the stream, but a more gradual rise in v,, would occur on the side of the
stream facing the left wall as momentum is exchanged with the other water
molecules there. Again j, mimics this behavior as shown in Figure 8.7 and
validates the ability of the STEP1D element to model the expected physics
of a superconductor.

This comparison of a fluid flow to a Ginzburg-Landau supercon-
ductor is a particularly enlightening one because, if this superconductivity
model is correct, it explains the source of the miniscule resistivity in super-
conductors. 7Theresxst1v1ty is a ;e_zsult of a momentum exchange produced by
collisions of Cooper pairs, tﬂe éupeconductor’s charge carriers, as required
by the residual equation (3.2.6). Because the collisions are relatively infre-
quent, a “spike” in the current density appears in the boundary layer, rather
than a “smearing” of the current density to an approximate step function.
The position of the spike is determined by the density of charge carriers, the
current density vector choosing the point where the fewest collisions can take
place. The fact that the density of Cooper pairs is higher on the interior of
the boundary layer than the exterior explains why j. changes more slowly
towards the center of the conductor. The Cooper pairs in the current stream
7, are simply experiencing more collisions with stationary Cooper pairs be-
cause the density of pairs is higher towards the center of the conductor. Its
position also determines that there is an expulsion of the B field from the
interior of the conductor (the Meissner effect) because there is no current

there to generate a field in accordance with Maxwell’s equations.
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Figures 8.8 and 8.9 show the By field generated there. Figure 8.8
shows By over the whole conductor and Figure 8.9 shows By in the boundary
region. Because no analytical solution is available, the B field has been
plotted using the two different methods cited previously and finite element
values for || and A,. As in Chapter VII, the By field calculated using
Equation (5.3.2) is plotted as a step function. Both sets of values match
fairly well over most of the region, but show some divergence towards the
maximum and minimum values of Bg. No reason exists to prefer one set of
values over the other, but using j {¢) {6 recover By has the advantage of being

able to directly compute By at element nodes.

Expected physical behavior is matched by both curves. The value of
By computed by using (8.2.21) also matches the necessary analytical value,
derived from an inﬁegral form of Maxwell’s equations, of poI/277r.. A com-
parison of these values with values obtained by using the London model of
superconductivity does not allow any statement to be made about the accu-
racy of the Ginzburg-Landau model because the former neglects the gradient
of |¢|. The important point is that the Ginzburg-Landau model must achieve
a specific magnitude at r¢, and this is verified by Equation (5.3.2). For the
above reasons, the London values are not compared to the finite element

values obtained here.

8.3 FURTHER DISCUSSION OF RESULTS.

A v;(brd of caution is neécessary here with regard to the author’s phys-

ical interpretation of results. Because no analytical solution is available for
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comparison with the numerical results, these results and their physical in-
terpretation must be treated with some suspicion pending experimental ver-
ification. However, there is a good evidence to suggest that the results are
valid.

First, the numerical approach has been based upon the Ginzburg-
Landau theory of superconductivity. This theory, while not being thoroughly
validated experimentally for cases away from the critical temperature, has
been able to predict superconducting phenomena with a great deal of accu-
racy (Ref. [21, pp.104-191]). This provides a great deal of credibilty to the
ability of the Ginzburg-Landau theory for the prediction of EM and quan-
tum phenomena within a superconductor. It is universally accepted as an
accurate model of the macroscopic quantum-mechanical and electomagnetic
properties of a superconductor near its critical temperature 7.

Second, the results of this chapter and Chapter XI exhibit behavior
that is in qualitative agreement with the physics of superconductors. These
behaviors are the appearance of the Meissner effect and a current carried
at the surface of a superconductor. The Meissner effect is the almost total
expulsion of a magnetic field from the interior of a conductor, and this be-
havior is shown in Figures 8.8 and 11.12. The cause of this effect is that the
current is carried at the sufface of the conductor (Ref. [31, p.335]). In order
to satisfy Maxwell’s law VXV xB = j, no current can be carried within the
bulk of the conductor or a magnetic field will be present there. Again, the
STEP1D finite element shows this behavior in Figure 8.6.

Finally, there is some quantitative agreement between the STEP1D
finite element and a known physical value. The value of the By field at the
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conductor radius is known to be p,I/27r.. As mentioned at the end of the

previous section, the finite element model achieves this value at r,.

8.4 SUMMARY.

In this chapter, a broad range of topics necessary to the solution of
the superconductivity problem by the finite element method are discussed.
The topics include the four-potential formulation of superconductivity, ap-
propriefe boundary conditions, nonlinear solution techniques, scaling tech-
niques, and appropriate mesh choices for finite element models. The most
1mportant aspect of thls research is the insight that is gained about super-
conduct1v1tv For the szburg-Landau model it'is possxble to think of
the current that moves threugh a superconductor as a “stream” of charge
carriers called Cooper pairs that moves through a “sea” of static Cooper
pairs; ThlS “sea” acts like an extrerrxeljr low viscosity ﬂmd, and the “stream”
moves through the region of the sea” where the density of the Cooper pairs
is the sma.llest ThlS region represents ‘the place where the least amount of
renergy is e*cpended by the collisions of movmg Cooper pairs with station-
7 ary Cooiaer 7p7a~1rs Unlike the London apprommatlon or linearized forms of
the Ginzburg-Landau model, the physics of the system as described above
are shown only by modeling the exact Ginzburg-Landau equations so that a
complete description of j, can be obtained. The STEP1D model shows this
; behe.;ier rvell and from the limited seerch of literature that the author has

performed it is believed that this is the first model that shows the physics

in such good detml

Now that reasonable models for the normal and superconducting

states of a conductor have been developed, the next step in the complete
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modeling of a conductor is to add thermal effects. This is the topic of dis-

cussion of the next chapter.
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CHAPTER IX

THE THERMAL PROBLEM

It is first necessary to model the temperature distribution within a
conductor before the effects a temperature field has on the EM fields and the
quantum properties of a conductor can be deterrninéd. Appropriately, the
first topic of discussion in this chapter is the modeling of the temperature
field of the steady state heat conduction problem with convection cooling
boundary conditions. The one-dimensional case is the case of interest for
this work’s examples and is the only case discussed. In Chapter IV it is
mentioned that there are no temperature gradients within a one-dimensional
steady state superconductor. Because no gradients are present, the temper-
ature distribution of a superconductor is known and the calculation of the
temperature distribution by finite element methods is not necessary. There-
fore, this chapter is concerned with the finite element modeling of a normal
conductor. The temperature distribution within a conductor is a function
of the current I and the thermal boundary conditions at r.. In the current
chapter, it is assumed that the current I is steady and does not change.
Cases where the current load I changes are discussed in the following chap-
ter. For this chapter, the discussion is about the physics of a conductor as
the thermal boundary loads are varied.

The discussion begins by first developing the finite element model
for the temperature distribution of a one-dimensional conductor, and then

determining the analytical solution of that problem. The analytical solution
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to this problem is developed later because certain assumptions about the

finite element model have a direct effect on the analytical solution.

9.1 FINITE ELEMENT DISCRETIZATION.

9.1.1 CONSTRUCTING THE LINT1D FINITE ELEMENT.

Using the two-node “line” finite element again provides the C'° conti-
nuity required by the variational functional of (4.1.7) for 7. Again individual
elements and elemental properties are identified by the superscript (e). The
two element end nodes are denpted by the subscripts ¢ and j. The tempera-

ture T is interpolated over each element as
T =NZ© (9.1.1)

where the row vector N contains isoparametric shape functions for the inter-
polation of 7. The elements of N are functions only of the spatial coordinate
r. The column vector 7{9 contains the nodal values of 7, which are con-
stants with respect to time. Substitution of these ﬁr‘literelen}ent assumptions

into the variational functional of Equation (4.1.7) gives

T -
QL) = dV(e>{EI(e)T3_N 5_N1(e)_w(e)j§e)21<e)TNT}

vie) or Oor =
o) (9.1.2)
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Jg oz,
| Variation of the above with respect to _7_'_(") will produce
T | ONTON
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(9.1.3)
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Quantities k and w(®) are functions of the spatial coordinate r and not of the
independent variable 7. This assumption is made because the variational
functional fo) does not give the correct residuals for the heat conduction
problem if the thermal conductivity and the electrical resistivity are allowed
to be functions of 7. This approximation can be corrected by using the
nonlinear solution procedures of Chapter VIIL. During the solution phase, k
and w(®) are held constant at their values for step n, and after the solution
vector v at step n + 1 is determined, k and w(®) are updated using the new
temperature distribution of step n+ 1. If the step size I; is small, v does not
move too far from the true equilibrium path and the values of Z(® are close
enough to the exact values that any error is negligible. This assumption is the
‘reason for discussing the finite element model first instead of the analytical
solution. No analytical solution exists for the set of coupled EM-thermal
equations where k and w are functions of 7. By making the approximation
that k and w are functions of the spatial coordinate r, an analytical solution
can be developed.

The spatial approximations used are the ones discussed in previous
chapters, i.e., w is a step function or constant over an element, and k& is
inte;rpolated linearly across the element. In terms of our shape functions, k

may be written as

k = Nk(© (9.1.4)

where k{® contains the nodal values of the thermal conductivity. The values
for k{®) are obtained by using Equation (4.2.1). Equation (4.2.1) is a function

of T, and is evaluated at 79 and T® to obtain the respective components
; ; P P

of k©, k{*) and k§-°). For the evaluation of k!® and w(®), 7;(‘) and 7}(6)
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are the two components of 7(¢) at step n. The elemental value for w(®) is

determined by the formula
W) =w, + 1 (Wi(T;(e)) + wi(']}(c))) (9.1.5)

where w, is the residual resistivity, and w;(7) is the ideal resistivity. The
ideal resistivity is calculated as described in Section 4.3.

All but two of the bounda.ry 1ntegrals of (9.1.3) can be ignored by
noticing that the heat flux @, between mterelement bounda-z:les in the radial
direction must be C° continuous; this point is shown later by the analyt-
lcal solution. The two remaining boundary 1ntegrals occur at r equal to

' zero and rc' At r equal to zero, 1t can be seen that the boundary integral
7there vamshes, and the onl'» remmmng boundary 1ntegral occurs at r.. The
remaining integral is a functlon of the boundary heat flux loading where
Q,-(CT) represents this load and < is the thermal loading paramter.

Because non-linear solution techmques are used, expressmns for K(¢),
() r(e) p(©) and q(®) must be determined. The Euler equations of (9.1.3)
give the following expressions for r(¢), p(®) and £le)

ONTHN
(©) _ (e) ON o)
f v(cel)V { b or— }

PO = | av (W@ N} + b {27mQ(
vie)

(& = £(8) _ pl©

) {(1)} (9.1.6)

where the Kronecker delta §;; is defined as

;=0 1#]
(9.1.7)
=1  i=j

nown et
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and m = Nyire + 1, with Nyre again representing the number of elements in
the conductor. Taking the partials of r with respect to 7 and ¢7 produces

the following expressions for K and q(®.

T
k© = [ qv© {ka_N ?E}

vie) 37‘ 67‘
0
!
.(e)

r (9.1.8)
8Q-(¢ )}
where j; and w(®) have been assumed to be only functions of the nodal

q(e) = bme {27”'c

ocT

position r and therefore vanish.

9.1.2 APPLYING BOUNDARY CONDITIONS.
In the previous section, expressions for p(®) and q(®) are determined.
They contain the boundary heat flux term Q,(¢7). The heat flux at r. for

the one-dimensional steady state convection cooling problem is expressed by

the Euler equation of (4.1.10)

Qr = heonv (Too - T(rc)) (919)

Because the free stream temperature 7, is known, it is natural to choose
this variable as the load to be varied. To make 7 a variable load, it is
split into two parts where 7 is the initial loading temperature, and 7y, is the
variable loading temperature. The free stream temperature is now expressed
as

To =T+ ¢TT, (9.1.10)

The value of the temperature at r equal to . can also be expressed as

T(r)= NI =T, m=Nyire +1 (9.1.11)

Tc
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where N; is the second component of the shape function vector N, Tj(m)
is the nodal value of the temperature at r., and the superscript letter in
parentheses represents an element number and not an exponential. When the
new expressions for 7o and T(r.) are substituted into (9.1.9), the expression

for Q-(¢7T) becomes
Q-(¢T) = heonv (7; +¢7h - ™) (9.1.12)
and the expression for BQ,.((';-)/ o¢7T is

8Q.¢T) _ o™ _ (m)
"'—5&‘7—' = heonv (71 - aCT = heconw (TL_w ) (9.1.13)

where wg-m) is the nodal value of the incremental rate of change of 7 at r..
By convention, any terms of a set of finite element equations that
include the incremental rates and the nodal displacements are usually moved

to the left hand side of the system of equations. Doing this, and making

substitutions for @-(¢7) in the previously derived vectors p(® and £ gives

£le =/ dv(e { aaN aaNT(e)} + Sme {277} [0 0] T (e
v

(e) r

pl®) = / dv(® {w(e)jﬁ‘)2NT} + 8me {277 cheony (To +¢TTL) } { (1’
yi(e)

(9.1.14)
Similarly, K® and q(®) are
T
N
K® = | dv® k?—l\i oN + bme {277} 00
vie) or Or 0 1
(9.1.15)

0
q(e) = §me {QWTchcaanL} { 1 } )

The addition of the bounda.ryr term Q, makes this system of equations, when

assembled. determinate and no nodal values need torbe constrained.

11— 0 .
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9.2 ANALYICAL SOLUTION TO THE TEST PROBLEM.
Equation (4.1.14) states that the temperature distribution for a lin-

early interpolated k and step function w and j, may be expressed as

_wj (rAr  kiAr? - Ak 1 rAr
T== (Ak V=R vt +C‘k,~ In kiAr + Ak +C
(9.2.1)
where C; and C; are integration constants and
kj—ki . Dk
k=k + p—— r=k;+ =" (9.2.2)

where k; and k; are the values of k at the inner and outer boundaries of
integration respectively. To adapt this solution for each element, the inte-
gration constants C; and C; are first replaced by the constants Cle)4q and
C(€) en where the superscript (e) represents an individual element number
again. For notational convenience, the following equalities are also defined:
al®) = kfe). be) = Ak/Ar and ¢(® = —w(e)jgc)z. The function ft(® is also
defined as

| (&) 7 gle) e
O =L (2 - v _odd (1) 9
ft'¥(r) = V0] (b(e) In (k) r) + 5 rln : (9.2.3)
Using the new notation, the temperature 7 over each element is expressed

as

TE(r) = fO(r) + Chyen (9.2.4)

Using a little physics, it can be seen that the heat flux out of an
element must equal the heat flux into adjacent elements because the system

is conservative and energy must be conserved. This requires that the heat
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flux Q, be C° continuous and gives the following series of equations that

relate the heat flux transferred across adjacent element boundaries

. e -1
C)aq q(e)r$°)_c(°"12,dd gl 1)r§.° )

- = - 9.2.5
7'se) 2 7‘5-6-1) 2 ( )
This equation can be rearranged to give
d(e)r(e) q(e 1)7.(e -1)2
Clhgq = —5— -%—C(e lodd - 2 (9.2.6)
by using the relation r(e gy 'e). At r equal to zero, C{'}4q must also be

zero for the system of equations to remain bounded. This gives for C (e) 44

q(e) (e)?

G = P (g (o)) e

.= 0 - e=1

(9.2.7)

The values for C(¢)yen may be derived in a similar manner by ensuring that
T is C° continuous across element boundaries. The result is

Nuwire
Cen =T — O = Y {AP(D) - 2(1)} (9.2.8)

p=e

where 7; is the temperature at trhrer sﬁrfaée of the conductor and equals the
nodal value TJ-(m). T. is determined by using the discretized version of Equa-
tion (4.1.21), which is

o)

qu'e
T,=T,+¢(TTL + = > { / w(°)j§‘)2rdr} (9.2.9)

h T (e)
convlc T r;

The preceding analytical solution is only valid for cases where ble) is

nonzero. As k,(e) approaches k;e), the first two terms of (9.2.3) diverge. For
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cases where b(¢) is zero, the methodology used to derive (9.2.1) in Chapter

IV can be used to determine that ft(¢)(r) becomes

& (r) = —i:—)r? +C) 44 In(r) (9.2.10)
The methods of this section can then be used to show that the solutions for
T., Clel 44, and C(€) en are identical to those of Equations (9.2.7), (9.2.8) and
(9.2.9).

The above solutions to the heat conduction problem were originally
loaded into a Fortran subroutine and solutions to the example problem were
computed. For the example problem and material values used, it was found
that incorrect solutions were being determined. One source of error was that
the magnitude of the first two terms of (9.2.3) were much greater than the
last term. Finite precision numerics caused the last term to be virtually ig-
nored when determining C(¢),en and ft(e)(r) although this term should have
made a noticeable contribution to both. All of the formulas were rearranged
so that C()yen and ft(®)(r) were computed in a term by term manner, i.e.,
first all of the In(k) terms were computed, then all of the In(r/k) terms,
etc.. This improved the solution marginally, and the problem was examined
further. The largest source of error came from the finite precision mathe-
matics again. The term 5(®) was seen to be extremely small and caused the
first two terms of (9.2.3) to diverge. Although the divergence of individual
terms should cancel when summed during the computation of C(¢)ven, it was
beyond the machine’s capability to resolve the minute differences between
the large individual terms. False zero values or random values were being
assigned for the difference by the machine. To correct this problem, when

the absolute value of the percentage difference between kfc) and k;-e) dropped
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below 2.2 x 10~9, k was assumed constant over an element. The value of k;e)
was then used for the elemental value of k, and Equation (9.2.10) was used
to calculate ft()(r) and C®Lyen. |

The numerical results became much better, and both of the above
corrective procedures are implemented in existing coding. Results presented
in this work as the é,na.lytica.l solution to thermal problems used the above

methods to control numerical errors.

9.3 NUMERICAL EXPERIMENTS.

9.3.1 THE FINITE ELEMENT MODEL.

The finite element model derived in the previous section has been
applied to the test problem described later in this section. The LET1D finite
element is used for determining EM quantities and the LINT1D element is
used to determine the temperature distribution. Both of these elements are
treated as one-dimensional axisymmetric elements. The LET1D element is
identical to the CUPLEID element except that w(®) is allowed to change
during the solution process. The description of thernodal degrees of freedom
and the variables associated with each degree of freedom for the CUPLE1D
element caﬁ joe found at the beginning of Section 7.3.1. The permeability
p(¢), the resistivity «(®) and the current density jge) are uniform over each
element.

For the LINT1D element, the “line” type element has only two end
nodes which are defined by their axial positions r§°) and rge). They each
have one degree of freedom corresponding to the temperature 7" which re-

sults in a total of two degrees of freedom per element. These nodal values are
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determined by interpolation with standard linear shape functions that pro-
vide the C° continuity required by the variational formulation. The thermal
conductivity of each element is also calculated by interpolation with stan-
dard linear shape function where the nodal values of k are determined by the
nodal temperatures at step n and use of Equation (4.2.1). The resistivity of
each element, for both the LET1D and the LINT1D elements, is calculated
by using Equation (4.3.1) and the nodal temperature values at step n to
determine w at each node, and then taking the mean of the two w’s. The
value of jge) for the LINT1D elements is determined by use of the LET1D

finite element.

9.3.2 APPLYING BOUNDARY CONDITIONS.

As shown earlier, no nodes are constrained for the thermal part of
this problem. The thermal flux terms that contain the Kronecker delta are
directly injected at their appropriate positions when assembling £e), p(®,
r(®), K and q‘®) to account for boundary conditions. The electromagnetic

boundary conditions are set as described in Section 7.3.2.

9.3.3 ASSEMBLY AND SOLUTION.

Both tangent stiffness matrices KE¥ and K7 are assembled in an el-
ement by element fashion following standard finite element techniques. KM
and K7 are used here to represent the master electromagnetic and master
thermal tangent stiffness matrices respectively. The superscripts EM and T
are also used in the sequel to distinguish between assembled electromagnetic

EM ;

and thermal vector quantities (e.g., v& is the electromagnetic solution vec-

tor). KEM is stored in a symmetric skyline form and K7 is stored as three
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vectors because it is a tridiagonal matrix. Systems of electromagnetic equa-
tions are modified for boundary conditions as described in Section 7.3.2 and
are processed by a standard symmetric skyline solver. After the solution pro-
cedure that is described later has been used, vEM provides the desired nodal
values of A, for field recovery and the elemental values of j, for ca.lculatioﬁ
of the electromagnetic heating loads of the heat conduction problem.

Systems of thermal equations are modified for boundary conditions,
as discussed in -the preceding section, and are then processed by a standard
tridiagonal solver. The solution procedure then returns v7 which contains
nodal values of 7.

Solution Technique

Because the values for & and Q(°) are actually functions of the tem-
perature 7 and not the spatial coordinate r, the LINT1D finite element is
nonlinear, and the nonlinear solution techniques of Section 8.2.2 are used to
solve problems. These techniques work well for thermal problems if the rate
of change :of temperature across an element is not too large.

The soiution procedure is started by chobsing a reference state for 7.
The reference state chosen for the examples of this work is set by initializing
vT to T, and vEM to zero. For cases where 7 is not suﬁiciéntly close to
the equilibrium path, the reference state may be chosen'by use of Equation
(4122) For the latter case, the thermal conductivity and electrical resistiv-
ity are evaluated as constanté over the whole domain of the conductor and
evaluated at some mean Vrepresentative temperature such as 75. The current

deﬁsity becomes a constant with these assumptions and is equal to I/ Tre2.

[ I N O R O I I A R O A A
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To advance the solution to the next step, the set of incremental rate

equations

K,.w,=4q, (9.3.1)

is solved. This system can be written as

KEY 0 1[wEMY _ (aE¥
- 632

n

where the subscript n represents the current step number. The solution
vector v, is equal to (vEM v7T )T. The rest of the solution procedure is
identical to the procedure outlined in Section 8.2.2. except that K, r, f and
p at step n + 1 are calculated by using the values of 7 and j£‘) from the
previous step n. The solution must be calculated in this manner because
the variational formulation assumes that %, w and j, are all functions of the
spatial coordinates and not the independent variable 7. This device holds
the material properties and j, constant for K, r, f and p so that a new
temperature distribution at step n + 1 can be determined. This means that
the solution procedure is not solving the correct set of equations for the true
equilibrium path of the heat conduction problem.

Unfortunately, this is the current level of advancement of heat con-
duction analysis. To solve this problem, a relatively small step size [, is
taken. This “fix” allows the computed solution to remain close to the cor-
rect equilibrium path. This problem can also be corrected By holding ¢7
constant and taking several steps. The result is that the quantities K, r, f
and p are all updated until the correct equilibrium path is reached. For the
examples presented here, the last “fix” was not required as taking a small

step size l,, brought the solution sufficiently close to the true equilibrium

path.
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9.3.4 SCALING TECHNIQUES.

The tridiagonal solver that was implemented does not include any
method for the estimation of the conditioning of a system of equations. Be-
cause no estimate was available, no attempt was made to scale any of the
thermal systems of equations that were processed. The skyline solver did
include the capability to estimate the condition number of KEM . Choosing
realistic values for the material properties w(®), e®) and p(®) made KEM 5o
highly ill-conditioned that the solution method failed, and showed that the
values used in the example problems of Chapter VII were rather simplistic.

Some of this ill-conditioning is alleviated by employing a scaling
scheme similar to the first scaling technique of Section 8.2.3. This scaling
is performed at an elemental level before KEM is assembled. Using L, M,
T and Q to represent units of length, mass, time and charge respectively,
the units of 4, j:, k¢ and A, are seen to be ML/(TQ), Q/(TL?), Q/L and
ML?/(TQ) respectively. Many scaling schemes were tried, but the one that
reduced the condition number the most gave the scaled displacements of A,
j:, and kg dimensions of M'2L/T and ). dimensions of MY2L3/2/T. The

elemental scaling matrix Sge) for each element is

R 0 0 0 0 0]
s 0 o 0 0 0
, s 0o 0o 0 0
sl = $9 o0 0 0
58 (()) 0
symm. S O (9.3.3)
L S77 -

SO =5 =2/ve SR =58 =1k
S5 = Jew) s =2/ /ie

Sg;) =0 e S Nwire; Sgg) =1 e> Nyire
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(e) _

] rE‘). The inclusion of the elemental

where () is the elemental length r
length in the scaling parameter for j, does not cause any difficulties because
the only diagonal terms affected by Ség) of KEM correspond to the j, degrees
of freedom which do not couple through the diagonal terms.

To illustrate this point, consider the diagonal terms corresponding to
the degrees of freedom for A, of a two element system that contains a total
of three element end nodes. If A(f) is scaled for each element by (%), A at
the shared center node will be scaled on an elemental level by I!) for the first
element and [(?) for the second element. Note that the bracketed superscript
numbers represent the element number and not an exponent. This causes
no problem in determining scaling factors if 1)) equals I(?), It is simply
I or I®), But if the lengths differ, problems will occur because A at the
shared node will be scaled into two different dimensions! Trying to assemble
the scaled elemental diagonal terms of A, with this scaling would result in
an error because each scaled variable represents a single scaled independent
variable.

The scaling matrix of (9.3.3) avoids these difficulties due to a careful
choice of its elements. Ség) ensures no coupling of adjacent values of j {2 and
also ensures that there are no zero diagonal terms of the assembled scaling
matrix for degrees of freedom of j {*) that are constrained to zero. 5.2 also
ensures that no zero diagonal term appears for the extra “empty” degree of

KEM

freedom of that is discussed in Section 7.3.



177

The scaled elemental electromagnetic tangent stiffness matrix for

l1<e< Nyire 18

0 - 0 0 0 0 0]
—TSS) K23 r§°) 0 Ky Ko
o 1 D0 0 - 0
K O 0 0 O 0 (9.3.4)
0 0 0
symm. rgﬁ) -0
L 0 |

1¢) yoc 1¢) 4 ¢
LT HoCo [ (e) _ qle) _ﬁ_M( (&) 4 y(e) )
Ko = 2 wle ('l‘m ! /6) Kas = 3w '™ +e/e

Ky = — ) oo (0

2 wle ™
where 7 = (1/2)(r$°) + rg-e)) is the mean radius of the element and ¢,
is the speed of light in vacuum. As can be seen by inspection, the closer
(l(‘)ﬁ/2)(p°c,,/w(°)) is to one, the better the conditioning of the matrix. If
this occurs, it can also be seen that all of the terms become proportional
to approximately rie) /1(®). Using the test material of high purity aluminum
does not allow (1(®)/2)(goc,/w(®) to come as close to one as is desired, and
other means are used to reduce the conditioning of the scaled electromagnetic
system of equations. It was found that the choice of mesh discretiztion

greatly affected the conditioning of the system, and this is the next topic of

discussion.
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9.3.5 MESH GENERATION.

The thermal conduction problem is similar to the superconductivity
problem because a finer mesh discretization is required near r. to accurately
determine the nodal values of the independent variables. The independent
variable for the thermal conduction problem is 7 and the electrom‘agnetic
quantity « in the temperature range of interest is proportional to 7°3. This
behavior suggests that electromagnetic quantities vary either much more
quickly or more slowly than 7 depending on whether the system is above
or below 1° Kelvin. This behavior also suggests the use of separate meshes
for the electromagnetic and thermal equations. Separate meshes were not
used for the examples of this work because they require a transfer of data
between the thermal mesh and the electromagnetic mesh and are subject to
extrapolation errors. Separate meshes also require more computational effort
and memory storage. For the above reasons, it was decided to use a single
mesh for both the linear electromagnetic and thermal system of equations.
As mentioned above, there is a finer grading of the thermal mesh at r.. This
grading was determined to be a source of ill-conditioning for the assembled
EM equations.

Originally, a small region near r, was discretized with regular finite
elements and the remainder of the conductor volume was descretized with
larger regular finite elements. It was seen that at the node where the two
meshes joined, off-diagonal terms were generated that were substantially
larger than diagonal terms. Other off-diagonal terms that were substantially
smaller than diagonal terms were also generated. To cure this problem, the

scaling scheme of the previous section is used to make off-diagonal terms of
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the same order of magnitude as the diagonal terms on an elemental level. A
new mesh discretization scheme is also used to eliminate the substantially
larger and smaller off-diagonal terms. The third scaling technique of Chapter
VIII does this for a system of positive definite equations, but this technique
was tried and did not work here because the system is positive semi-definite
due to the Lagrangian multiplier A..

By observing that all of the terms in the elemental EM matrices are
approximately proportional to rm)/ I{¢), a basis for the mesh discretization
can be determined. By minimizing the rate of change of rm)/ i(¢) “bad”
off-diagonal terms can either be eliminated or changed to more closely ap-
proximate the magnitude of the diagonal terms.

For convenience, a regular mesh of Nyin. elements is used in the
region near r.. The remaining region uses a special mesh that contains
Ncoarse elements. This choxce determines d(r(°) /l(°))r/de to be 1.0 in the
“fine” region. It also specifies that r) /149 equals (rncp1/ 1(¢)) 4.5 at € equal
to Neoarse + 1 where rncpy is the value of r at the node where the coarse
mesh ends. This choice also determines that the length of each element in
the “fine” region be equal to (rc — Tncp1)/Nfine- An additional boundary
condition for the axisymmetric problem is that i) /1(¢) is always equal to .5

at e equal to 1.

To satisfy the three boundary conditions and still have a varible

input for the mesh discretization, a cubic curve fit for rm)/ I(¢) is required.

Using these requirements gives the following equation for i) J1te),

(e)

l(e) = % (A1 ed + .Arger2 + Asze + A,;) 7 (9.3.5)

Al = B;;_1 (2C1 - BlNcoarae (Ncoarse - 1) - 2c2(Ncoarse + 1) + Ncoarse - 1)

[L Ul ORI

LT RRAN W] Ul [ T TR N1 T

| A
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A, = By + B Ay A3 =20 -TA; —3A4; -1

A4=1—(A1+A2+A3)

2C3 - 202 +1 4— 6Ncoarse — 3N;20arse
B =(=2-_=2"_ B, =
2Jv'coar'.u: -1 2Ncoarae -1

B3 = (Ncoarse + 1)3 + B?(Ncoarae + 1)2 - (7 + 332)(Ncoarse + 1) + 282 + 6

C= (rncpl/l(e)) +.5;e = Neoarse + 1 Cy = (n(;)/l(e)); e=2

a [
C3 = 5;" (l(_e)' ;€ = Neoarse +1

where the subscripted A’s, B’s and C’s represent constants. The constant
C, is an input value and represents the value of i) /1(9) for the second el-
ement. The value of riY /1(®) for the second element is chosen as in input
variable because at the first element, this value is determined by the prob-
lem geometry as always being 0.5. It is also easier to determine the size of
the second element with this formula. If C; is larger (smaller) than 1.5 the
second element is smaller (larger) than the first, and if C; equals 1.5, it has
the same size. The value for » where the two meshes meet (r,p1) is also
an input value. For the numerical experiments presented here, it was found
that rpcp1 = .75r. and C; = 1.5 produced the best results.

To determine the values of r at each node in the coarse mesh region,
the following additional formula is used

(e) (e)
R N [ I e = (Neoarse + 1), Neoarse, - - -5 2,1 (9.3.6
Ti T (r(c)/l(e) -1 ( * ) Ne ( )
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9.3.6 FIELD RECOVERY.

For the thermal part of the problem, the 7 field is recovered by
using the values of v7. The electromagnetic fields are determined by using
the simple finite element approximation of Chapter V, Equation(5.3.6). This

value was plotted as a step function due to its C~! continuity.

9.3.7 TEST PROBLEM.

In this example, high purity aluminum was again used for the test
material. The values for k and w(¢} were calculated as discussed earlier in
this chapter. The permeability and permittivity for all elements were set to
po and €, as explained at the beginning of Chapter IV. The reference state
for v was set as described in Section 9.3.3. The geometry was that of a
one-dimensional axisymmetric wire as shown in Figure 2.1 with a radius 7.
transporting a total current I equal to 5 amperes in the positive z direction.
The mesh was discretized as described in Section 9.3.5 with 7 equal to
1.15 x 104, Neoarse €qual to 50 elements and Nyin. equal to 30 elements.
This gave a total of Nyire equal to 80 elements. Because the element for
the free space magnetic fields had been validated before, no elements were
generated external to the conductor. The solution tolerance 7 was 9.0x107*
and required about 2 iterations per step to converge. The estimated condition
number for KEM ranged from 10816 to 65888. The ini*.ial temperature ‘was
chosen as 1° Kelvin and the loading temperatu;e was 1° Kelvin. The step
size [, was chosen as .025 and 40 steps were necessary to move the solution
from the starting temperature of 1° Kelvin to 2° Kelvin.

The results for the analytical solution and the finite element solution

for T were so close as to be indistinguishable on a plot. Consequently, Figure
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9.1 shows the results for the finite element solution for the temperature
distribution and Figure 9.2 shows the percentage error of the finite element
solution from the analytical solution as functions of the radial distance at
the final step (T = 2° Kelvin). A comparison of the Euler equations of the
EM problem (Equation (2.3.11)) and the thermal problem (Equation (4.1.8))
shows that they are of an identical form. If k is nearly constant and w(e jﬁc) [k
approximates a constant, then the behavior of A; and 7 within the example
wire should be the same. A comparison of Figure 9.1 with Figures 5.2 and
7.2 show that tﬁis is indeed the case. Figure 9.2 shows the deviation of the
computed solution from the analytical solution as a percentage error, and it
ranges from a maximum at r = 0 of 2.860 x 1072 to zero at r = r.

The primary variables of interest for this research were the B fields,
and they are the only EM results that are shown here. Figure 9.3 and 9.4
show the results for the By field at the final step. Figure 9.3 shows the By
field over the whole conductor and Figure 9.4 shows the By field for the
volume of the mesh with the finer discretization. The percent error ranged
from 33.1 percent at r = 0 to 5.89 x 10™* at r = r.. By observing where
the analytical solution intersects the “steps” in Figures 9.3 and 9.4, a rough
estimate of the accuracy of the finite element solution can be made. The finite
element solution is exact when the analytical solution intersects the center
of the “step tops”. It can be seen that the analytical solution intersects the
majority of the “steps” at their center points. It can also be seen that the
error quickly diminishes as the distance from the center of the conductor
increases.

As mentioned earlier, the solution procedure is not exact. Also men-

_tioned was that the exact solution can be computed by setting 7, to the full
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load, 71, to zero and using the corrective Newton-Raphson method to iterate
~ onto the equilibrium path.

Tke above technique was tried for this numerical example and it was
found that the finite element results presented here differed from the exact
solution by 4.65x 1072 and 3.43x 10~> percent for the temperature at r equal
to zero and r. respectively. The By field differed from the exact solution by
33.3 and 5.60 x 10~* percent at r equal to zero and r. respectively.

A brief word must be said here about the analytical solution of Sec-
tion 9.2. In general, the analytical solution does not match the exact solution
because it uses the nodal values of 7 from the previous step to compute %,
w(® and j i¢). The analytical solution only becomes the exact solution when
¢7 is held constant and the solution is allowed to iterate onto the equilibrium
path. This brings about the rhetorical question, why bother computing the
analytical solution?

Tze analytical solution is computed because it gives some measure
of how close the finite element solution is to an exact solution. It will always
give the correct form of the solution, but not the correct magnitude if the
solution lies close to the true equilibrium path. This is the first step in
assessing the accuracy of the solution vector produced by the non-linear path-
following techniques used in this work. The second step is to hold the loading
parameter constant and then use the corrective Newton-Raphson technique
to iterate to the exact solution. The exact solution is then compared to the
original incremental solution. If the difference between the two solutions is
too large. then the solution procedure has moved too far from the correct
equilibrium path and a smaller step size needs to be chosen. The soiution

process is attempted again with the new step size and ¢ T reset to zero.
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In general, it is not possible to hold the loading parameter constant
at its final value and iterate onto the exact solution without first following the
incremental path to that point. There may be bifurcation points or other
stationary points on the equilibrium path that will not allow the solution
method to converge to the correct solution by this simple iterative process.
The problem of the thermally loaded conductor presented here does allow
the above method to converge because it can be determined where the only
critical point for this problem lies, that point being the superconaucting
phase transition point.

The plots for 7 and B, presented here show that with an appro-
priate mesh choice, a reasonable step size and a slowly varying temperature
distribution that the solution technique presented here is adequate for the

author’s purposes and little accuracy is lost with this solution procedure.

9.4 SUMMARY.

In this chapter, it is shown how thermal fields may be modeled with
the LINT1D finite element. The CUPLELD finite element is also adapted
to the nonlinear solution techniques of Chapter VIII to become the LET1D
element. This demonstrates the usefulness of the four-potential method and
the solution techniques for modeling the coupling that occurs between ther-
mal and EM fields. The four-potential theory is also validated for computing
the desired EM quantity, the B fields and the effects of temperature on these
fields by the results presented in this chapter. The use of real values for w, p
and e make the problem more difficult to solve, but by using a different mesh
discretization and scaling techniques, good solutions for the B field can still

be realized.



187

For this chapter, the case where only thermal loads are allowed to
vary is solved. In the next chapter, the case where the EM load I is allowed

to vary is examined.



CHAPTER X

COUPLED THERMAL-EM PROBLEM IN NORMAL CONDUCTOR

In the previous chapter, the consequences of varying the ther-
mal loading on a conductor are discussed. In this chapter, the thermal-
electromagnetic coupling in a normal conductor loaded by varying the cur-
rent I is discussed. Most of the necessary ground work to comsider this
problem is developed in the previous chapters. Analytical solutions to both
problems are discussed in previous chapters and are not presented here. The
solution, mesh discretization and scaling techniques of the previous chapter
are also implemented for the varying current load problem. The only parts of
this problem that change are parts of the LINT1D finite element that depend
explicitly upon j, which is a function of the current load I, and the parts
of the LET1D finite element that are dependent upon I. The first topic of
discussion is the modification of the LET1D finite element to include cases

where I is allowed to vary.

10.1 FINITE ELEMENT DISCRETIZATION.

10.1.1 MODIFICATIONS TO THE LET1D FINITE ELEMENT.

The first step in adapting the LET1D finite element for a varying
current load is to split I into an initial current I, and a loading current I,
as was done for the superconductor. Thus I = I, 4+ ¢ EM], where (EM is

the electromagnetic loading parameter. By using the Kronecker delta with
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the boundary terms, the new equality for I, and Equation (7.2.2), £ ple)

and v(¢) are expressed as

£0) = {K"M + KOO (10.1.1)
0 SrerPw® 0 0 0 0 0]
0 0  —bmeri™w(™ 0 0 0
‘ 0 0 0 00
K*) = 27H 0 0 0 0
Sme 0 0
symm. 0 O
I 0.
(10.1.2)
(e ) s 3\
Kg 01 H
i 0
A(ze)i 0
vie) = ¢ RON p@ = (L +¢EMI)¢ 0 (10.1.3)
0’ 0
A.(ze)j ~SmeH
L ,\c ) L "‘6me /

where m agajn equals Nyire + 1 and H represents the element height. The
matrix K*(® is used here to add the boundary terms for & to K discussed
in Section 7.2.2. K*{® also removes the rank deficiency generated by the
“empty” degree of freedom discussed in Section 7.3.2. The correct value of
K4 i given by Equations (7.2.3), (7.2.4), (7.2.5) and (7.2.6). Taking the
partials of £(¢) and p(®) with respect to the independent variables contained
in v(¢) gives the tangent stiffness matrix and loading vector, respectively.

Therefore the tangent stiffness matrix K(® | the loading vector q®) and the



incremental rate vector w(®) are:

KO =k¥“ 1K, ¢9=1,{ 0 };

wie) =
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(10.1.4)

It can be seen that K(® is exactly the same as the stiffness matrix, modified

for boundary conditions and the extra “empty” degree of freedom of Chapter

VII thereby justifying the statement at the end of Section 7.1.1 that the two

are equivalent. A word of caution is necessary here because the expressions

for p{® and q(® are only valid for cases where the first degree of freedom for

A, is constrained. For the examples presented in the sequel, this is always

the case and no further information is needed to solve the EM system of

equations except that the “empty” degree of freedom for the fifth element of

v{™) must also be constrained to zero as explained in Section 7.3.2.
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10.1.2 MODIFICATIONS TO THE LINT1D FINITE ELEMENT.

The expressions derived in Chapter IX for K7, p7 and f7 for the
LINT1D finite element do not depend upon the current load I explicity
and may be used without modification to solve the current loading problem.
Because p'® for the LINT1D element does contain jge), it must be varied

with respect to the loading parameter ¢ EM to determine what happens to

the thermal system of equations as I is varied. The result for q'® is

| 5:(e)
© = [ qv® {20 ZNT 10.1.5

4 /V(e) { ¢ EM ( )
The assembled system of coupled thermal and EM equations with this form

for q can be expressed as
KEM ¢ wEM) [ oEM
where q7 is now a function of wE¥. This form of the equations is undesirable

because terms of the incremental rate vector appear on both sides of the

equality sign. Moving q7 to the left hand side produces

EM ’ g
[é{sm I?T] { wjf } = { qiM } oL
where KEY7T contains the elements of —q7 at the appropriate positions.
| Th1s form of the equations iis a.iso undesirable for two reasons. First,
the exitiz;‘;;;ir;rierE MT must be asserr;bled whichrre;qﬁirejs more 'computa.-
tional effort and memory storage. It also ruins the sparsity and the symmetry
of the original system of equations and a tridiagonal solver can no longer be

used to process the thermal equations. Second, KEMT i5 also a function of

the independent variable j.. This affects adversely the conditioning of the
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coupled system and typically requires more iterations to converge upon a
solution than a set of linear equations, which only requires a single iteration
to converge.

If the form of Equation (10.1.6) is preserved by making q7 afunction
of CEM the original sparsity of the system is retained and computational
effort and memory storage are reduced. To accomplish this goal, Equations

(7.1.2) and (7.1.3) are used. Insertion of (7.1.3) into (7.1.2) gives

qu-e (p)
w
I=1,+¢BPMI = w5l 3 /r o drgp)m (10.1.8)
st

where the superscripts (p) and (e) again represent element numbers and
Nyire is the total number of elements within the conductor. Rearranging

Equation (10.1.8) and taking the partial of ji") with respect to (EM gives

6](8) 1 IL
6CEM ,w(c) f (r) dr(p)u(p)

(10.1.9)

The bracketed term of the above expression is evaluated when assembling
KEZM and requires less computational effort and memory storage than the
scheme presented in Equation (10.1.7). The thermal loading vector q7
still a function of the EM solution vector vZM but does not cause difficulties
in the example problems. The value of vEM at step n is used to compute w
at step n + 1 in the same manner that v7 is used at step n to compute k
and « for K7 and KEM at step n + 1.

The coupled system of thermal and EM equations is conservative

and the variation of the discretized functionals that describe this system

should produce a symmetric system of equations. The fact that (10.1.7) is
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not symmetric is caused by the use of approximations that render them in-
complete. In Chapter IX, it is assumed that j is only a function of I but not
of the temperature 7, an approximation responsible for the unsymmetry 0f
(10.1.7). This point is mentioned here to emphasize the importance of using
the nonlinear solution procedure of Chapter VIII and equilibrium path fol-
lowing procedures to generate correct solutions. For small incremental steps,
the methods described in this and the last chapter work well for determining
solutions for the coupled system of thermal and EM equations although the
complete set of equations is not solved. Because the solution never moves
too far from the equilibrium path, the missing terms have little effect on

determining a correct solution.

10.2 NUMERICAL EXPERIMENTS.

10.2.1 THE FINITE ELEMENT MODEL.

The finite element model described in the previous section has been
applied to the infinite axisymmetric normal conductor of the previous chap-
ter. The modifed LET1D and LINT1D finite elements are used to determine
EM quantities and the temperature distribution, respectively. Both of these
elements are treated as one-dimensional axisymmetric two node “line” type
elements. The description of the nodal degrees of freedom and the vari-
ables associated with each degree of freedom for the LET1D element are the
same as the CUPLE1D element and are found at the beginning of Section
7.3.1. The permeability y, the resistivity w and the current density j, are

all assumed to be uniform over each element.
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For the modified LINT1D finite element, the description of the nodal
degrees of freedom and the variables associated with each degree of freedom
are found in Section 9.3.1. The material constants k and w are also deter-
mined by the same methods discussed in that section. The value used for
jge) to determine q(®) at step n +1 comes from the EM solution vector at
step n and 07 2‘*)/ OCEM for q(®) is determined by use of Equation (10.1.9).

The boundary conditions for this system are the same as described

in Section 9.3.2 and are set in the same manner.

10.2.2 ASSEMBLY AND SOLUTION.

The assembly and solution of the coupled EM-thermal normal con-
ducuctor with a variable current loading is identical to a conductor with
variable thermal loading except that Equation (10.1.5) is used to determine
q7. The scaling techniques implemented for KZM for the thermally loaded
conductor are also used on K. The mesh generation and field recovery
techniques used here are also identical to the techniques of Sections 9.3.5 and

9.3.6 respectively.

10.2.3 TEST PROBLEM.

A one-dimensional axisymmetric wire made of high purity aluminum
was used as test example. The geometry is shown in Figure 2.1. The radius of
the wire 7. is 1.15 x 10~%. The wire transports a total current of I, +( EMp,
in the positive z direction where I, is zero amperes and I is 5 amperes.
The free stream temperature of the system 7, is held constant at 2° Kelvin

by setting the initial temperature 7, equal to 2° Kelvin and the loading

temperature 71, equal to zero. The convection heat transfer coefficient heonv,
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the thermal conductivity k and the resistivity are calculated as described
previously in Chapters IV and IX. The permeability u(¢) and the permittivity
¢(®) for each element were set to u, and €, respectively, which are the free
space or vacuum values, a.s discussed at the beginning of Chapter IV.

The mesh was discretized as described in Section 9.3.5 with Neoarse
equal to 30 elements and Nfine equal to 30 elements to give the total of
elements within the conductor, Nyire equal to 80 elements. Because the
element for the free space magnetic field had been validated'before, none
were used outside of the conductor. ’I;he incremental step size l, chosen was
.1 and 21 steps were taken to give a final value for ¢ EM of ~ 0.97. The
solution tolerance T was 1.0 x 10™* and the solution procedure averaged
2 381 1terat10ns per step to converge. The condition number of KEM was
) estlmated to ra.nge from a low of 14826 to a hxgh of 70960.

The results of the analytical solution and the finite element solution
for T are mdastmgmsable on a plot. Figure 10.1 shows the results of the
ﬁmte element solution and Figure 10 2 shows the percentage deviation of
the finite element solution from the analytical solution for the final value of
(EM_ The maximum error from the analytical solution occured at r equal
to zero and was 2.67 x 1073,

To converge upon the exact solution another four increniental steps
using 14 iterations per step was required. For these four steps (EY was held
constant. The results of this final process showed that the finite element
solutxon presented in Flgure 9 1 d.n‘fered by 9.36 x 10" percent at v equal to
zero. and _3.27 x 106 percent at T equal to Te from the exact solution. For
all mcrements, the 1n1t1al or reference state was the ﬁmte element solution

obtained after following the incremental path to C EM equal to =~ 0.97. The



196

state at (EM ~ 0.97 was actually quite close to the equilibrium path. The
high iteration number required to move the solution back onto the equilib-
rium path illﬁstrates the difficulty associated with finding an exact solution
by simply using the corrective Newton-Raphson process. Sometimes, direct
iteration is not possible or more expensive computationally than just using
the incremental “path following” solution method presented here.

Figures 10.3 and 10.4 show the finite element and analytical solutions
for By. Figure 10.3 shows the two solutions plotted over the whole domain
of the conductor, and Figure 10.4 shows the solutions over the domain of
the finely graded mesh. At r equal to zero, By differs from the analytical
and exact solutions by 33.3 percent. At r equal to r., Bg has errors of
5.91 x 10~ and 5.85 x 10~* perecent when compared to the analytical and
exact solutions respectively.

Although not mentioned until this point, the 33.3 percent error at
r equal to zero appears to be large. Subtracting out the temperature at r
equal 7. from all of the finite element and analytical values for T and then
recomputing the percent error for 7 will give the same error at r equal to
zero of 33.3 percent. This observation has led the author to believe that the-
error is the same fof all systems of equations of the form V - (aVd) = f(b)
when this system is modeled with finite elements. Here a represents some
material constant, b the independent variable, and f(b) some function of the
independent variable b. If the above observation is correct, it should always
be possible to correct any error when modeling a system of this form.

A quick look at Figures 5.3, 5.4, 7.3, 7.6, 9.3 and 10.3 shows that the

correction is probably unnecessary. The divergence of the computed solution
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from the exact solution is so small as to be almost unnoticeable and from a
practical engineering standpoint, the error is not noticeable.

The reason that the 33.3 percent error appears to be large is because
the computed solution is compared to the exact solution on a node to node

basis. This is formally expressed as

Brp(r) — Bpx(r)
Bex(r)

x 100 (10.2.1)

% error =

where Brg and Bgx are the finite element and exact values respectively for

the By field. A more realistic error estimator for engineering purposes is

Brg(r) — Bex(r)
Bex(r) + Bex(r.)

% error =

x 100 (10.2.2)

This type of error estimate has been used to compute the error for 7 in
this and previous chapters. When computing 7 on a node by node basis,
the boundary loading has already been factored into the estimator. The
conclusion of this brief digression is that an error estimator by itself is not
always a good indicator of the accuracy of a finite element model. Graphics,
a relationship of numerical answers to the actual physics of a modeled prob-
lem and good engineering common sense should all be used with an error

estimator to judge the validity and usefulness of each finite element model.

10.3 SUMMARY.

In this chapter, a form of the LINT1D finite element is derived for the
case where I is varied instead of 7. The LET1D finite element is modified,
and using a nonlinear solution technique it is possible to compute some good
values for the thermal and magnetic fields of a one-dimensional axisymmetric

conductor.
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This represents the next to the last phase of this work’s analysis of
the coupled quantum phase-EM-thermal problem for superconductors. It
is now possible to generate models of the superconducting material in its
normal and superconducting phases. It is also possible to determine the
effect of varving either the thermal T or current I loading of that material.

The next chapter is concerned with the use of the final versions of
the LINT1D and LET1D finite elements with the STEP1D finite element
in a single computer program. This program is used to determine the éor-
rect state of a superconducting material and the values of the thermal and

magnetic Zelds.






CHAPTER XI

THE COMPLETE COUPLED PROBLEM.

This chapter is concerned with the correct application of the LINT1D,
CUPLE1D and the STEP1D finite elements to the the specific problem of
determining the electromagnetic and thermal fields within a superconducting
material. The main limitation on this model is that it is only one-dimensional
and cannot realistically model the state where B and 7T reach their critical
values because, as noted previously, the solution at the transition state is a
multi-dimensional problem. At this bifurcation point, a mixed normal and
superconducting state appears that needs to at least include variations of
¢ in the = direction to obtain an accurate model of the physics that occur
within a conductor {21, pp.99-103; pp.127-191]. This point also marks where
the computed solution must change equilibrium paths to accurately model
the physics of the electron transport within a conductor.

The methodology required to model a superconductor when the ther-
mal loading is varied is first discussed in some detail. Then the question of
how to determine if a computed solution lies above or below the bifurcation
point is discussed. Means to determine whether or not such a solution is
correct are also presented. These means form the basis of an equilibrium
path changing criteria. Finally, results that show the model changing state

as I and 7., are varied are presented to validate the path changing criteria.
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11.1 A STPERCONDUCTOR WITH A VARYING 7 LOAD.

To use the incremental approach to solve the superconductor with
a varying thermal load, £fEM and pEM are varied with respect to v7 and
¢7. The thermal quantities f T and p7 are also varied with respect to vEM

Doing so produces a system of incremental equations that can be partitioned

in the following manner:

() e

where KEY and K7 are the previously derived tangent stiffness matrices for
the superconducting and thermal conduction probienis respectively and q7
is trhe previously derived loading vector for the thermal conduction problem
with convection boundary conditions. The matrix KEMT is 8£EM 15vT and
the zero entries on the left and right hand sides of the equality sign appear
because 87 JOvEM =0 and 0qEM /5¢T = 0. Because the resistivity of each
' element u—;,(e) 1s zéro fé)ria superéoﬁdﬁct;)r, ornlyirorrliei nonzero term appears in
d'f. This témi has a.rnagmtude of 7, and appears at the d;greé of freedom
for T associated with the radial distance .. '
Sbl;?iiig the set of thermal equations produces the simple result that
T is a constant over the whole conduc.tor, the value of 7 at each node being
equal to T, + ¢7,,7.. This simplifies the solution procedure considerably
because the thermal equations K7w7T = q7, need not be solved by assem-

bling and inverting K7 . Instead of solving (11.1.1), which also requires the

assembly and srtoragier of KEMT | the corrective Newton-Raphson technique
is used to directly iterate to a solution for vEM. This is accomplished by
solving the superconductor problem with the current load I held constant.

The value for 7 at each node is the value of T at the n+1step, To+¢7, 71,
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where (7., equals {7+, and the quantity I, is the input step size. This is
the value of 7 that is also used to determine o and £, since they are both
functions of 7 and their values are required to obtain the correct EM tangent
stiffness matrix K™, ,

Essentially this is the same incremental/iterative solution method
used in the two previous chapters to generate the exact solutions for 7,
j,(f) and A{®. The loading parameters ¢(¥™ and ¢7 are held constant and
the system is allowed to iterate onto the equilibrium path. As mentioned in
those chapters, this technique can fail or become computationally expensive
when a large number of corrective iterations is required. Early in the testing
of the STEP1D element, it was observed that a reasonable solution for ap](e)
and A’ could be obtained in this manner if the reference state is set so that
all unconstrained values of |4|(®) are equal to |1hoo| and all values of A{®) are
set equal to zero. The number of iterations needed for convergence with
this reference configuration was usually less than ten. This configuration is
also identical to the initial reference state that is used to start the solution
procedure for a superconductor when the current loading [ is varied. This
means that the subroutine that generates the initial reference state for the
varying current problem can also be used to generate a reference state for
the varying 7 problem thereby reducing the logic and memory requirements
of a code that solves both problems.

The computational cost of using the above solution method is that
more iterations are required at each step and the reference configuration must

be recomputed at each step. There is also no guarantee that the solution

method will convege but numerical experiments strongly suggest that it will.
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The corrective Newton-Raphson technique is therefore used to solve
the problem of a superconductor with a varying thermal boundary load for
the following reasons:

KFMT is unnecessary.

1. Assembly and storage of
The number of iterations required per step is relatively modest.

Convergence, as determined by numerical experiments, always occured.

Ll

The reference state is identical to the initial configuration of the I load-
ing problem, allowing the use of one subroutine to set either configura-
tion.

11.2 DETERMINATION OF THE CORRECT EQUILIBRIUM PATH.

To check whether the conductor is in the normal or superconducting
state, one determines the critical temperature T. and the critical magnetic
ﬁeldB;Then B. and 7, are compared to the largest magnitude of B and the
highest temperature T (typically 7o) field within the conductor. If either 7
or B. is exceeded, a superconductor changes quantum states and becomes a
normal conductor. This change of state occurs because at 7 equal to 7. or B
equal to B, a bifurcation point for the equilibrium paths of a superconductor
and a normal conductor exists.

The existence of this bifurcation point also means fhat if the con-
ductor is originally in the normal state and Too falls below T, and the largest
value of B within the conductor is less than B, the material becomes su-
perconducting. It is therefore important to know the values of 7, and B, so
that the position of the bifurcation point along the equilibrium path can be
determined. The critical temperature T; is a material constant, and is de-

termined either by experimentation or by referencing previous experimental
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data. The critical B field B, is determined by using Equation (4.4.1) which
is a function of the temperature 7.

An alternative method for finding the correct conductor state is
to compute the Helmholtz free energy for the superconducting and normal
states of a conductor for the same thermal and current loading conditions.
After finding the free energies of both systems, the state of the system can
be determined by choosing the system that has the lower free energy. This
approach is computationally inefficient because it requires solving for the de-
grees of freedom v of both states at every incremental step. It also requires
knowledge of the heat capacity of the material for the superconducting and
normal states of the material, and finding these values can be a task of con-
siderable difficulty because of the dearth of experimental data. The first
approach is therefore chosen here.

Following the first approach, the B fields and 7 distribution as de-
termined by v,4+1 are checked at the end of each incremental step to see
if they are sufficiently small so that a superconducting state is possible. If
that is the case and the system was originally in the normal state at step
n, then v,4; is solved for again at step n + 1 using the superconducting
finite element STEP1D. If that is not the case and the condutor was in the
normal state at step n, then the solution at step n + 1 is accepted and the
program proceeds to the next step keeping the normal conducting state ele-
ment LET1D. If the B fields and the 7 distribution are small enough at step
n + 1 and the system was originally in the superconducting state at step n,
the solution vector v,41 is accepted and the solution process moves to the
next step using the STEP1D finite element. Finally, if either of the two fields

are too large for a superconducting state to exist, then v,4; is recomputed
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using the LET1D finite element and the solution method moves to the next
step using the LET1D finite element.

For the one-dimensional problem, this methodblogy appears to be
optimal and is the one used for the present numerical experiments. It has
the key advantage that knowledge of the heat capacity of the material is
unnecessary. Furthermore, the solution vector v only needs to be computed
twice when the system changes state. If the second path determination
method that involves computing the Heimholtz free energies of the normal

and superconducting states is used, the solution vector v must be computed

The first approach naturally delineates the tests for the proper equi-
librium state of the system into four sépara.te cases where a change of state

may occur. These cases are:

1. System originally in the superconducting state, thermal load increasing.
2. System originally in the superconducting state, current load increasing.
3. System originally in the normal state, thermal load decreasing.
4. System originally in the normal state, current load decreasing.

For cases where the system is originally in the superconducting state
and the current or thermal loading is decreasing, the system remains in
the superconducting state because the solution is moving away from the
bifurcation point and no problems involving equilibrium path changing are
posed. Similarly, when ther system is originally in the normal state and the
current or thermal loading is increasing, the solution remains in the normal
state because it is moviﬁg aiong the normal state equilibrium path away

from the bifurcation point. Again, this poses no problems to the solution

procedure.
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The comparison of T; to 7, the first path changing criterion, is rela-
tively straightforward and only involves the computation of T, at each step.
The second criterion can cause problems. This criterion states that B for
every element of the conductor must be below B, for a superconducting state
to exist. Comparing B over each element to B, can become computationally
expensive as the number of elements used to model a problem increases. This
computational expense can be reduced by finding a priori where B attains
its largest value within the conductor. For the one-dimensional axisymmetric
infinite conductor, B attains its largest value at r.. A cursory examination
of Equation (5.1.8) verifies that the preceding statement is correct. Equation

(5.1.8) can also be used to determine that

By(r,) = 2oL (11.2.1)

27r,

where s, replaces u for example conductors of this work, as discussed in pre-
vious chapters, and fl‘ J ﬁ;:dF is equal to I. By using this analytical solution
for Bg(r.). a simple means exists for determining if a superconducting state
is possible.

The only situation not discussed so far is when the incremental solu-
tion falls directly upon the bifurcation point. As explained previously, at this
point the physical solution cannot be modeled by one-dimensional elements
and the LET1D element is used to model EM quantities although the solu-
tion generated does not represent the correct physical state of the system.
This method is used so that the solution method can proceed to the next
step without failing. The LET1D element does not fail at this point because
it is based upon a potential energy formulation. The STEP1D element fails

because it is based upon the difference of the Helmholtz free energies of the
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superconducting and normal states. At the bifurcation point, this difference
is zero and the tangent stiffness matrix KEM becomes singular.

The physical significance of what is occuring is that both the normal
and superconducting states possess the same energy. In the actual physics,
a variation of ¥ occurs in the z direction, and the system chooses the eigen-
state that possesses the lowest possible energy and entropy. To extend the
current superconducting model to this problem, an adaptive mesh appears
to be necessa.r-y to determine the boundary between parts of the conductor
that are normal and suﬁerconducting. The adaptive mesh is also required to
make KE well-conditioned enough that reasonable values of EM quantities .
can be generated by standard nonlinear solution techniques. Unfortunately,
time limitations on the thesis research precluded the development of an adap-
tive two-dimensional mesh and the examination of the physics of this most
interesting and challenging problem was foregone.

The STEP1D finite element used for the thesis research should pos-
sess a rank deficiency of one at the bifurcation point. In an eﬁ"ort to gain
a better understanding of what was occuring at the bifurcation point with
the finite element model, the model was forced to converge upon this point
by setting the thermal loading to the critical temperature 7. and setting
the current loading to a value that would generate the critical field B. at
the outer conductor boundary r.. The corrective Newton-Raphson solution
method was then used to iterate to the bifurcation point. The finite element
model actually converged and returned a quantum state that carried no cur-
rent and an applied external field of B, at r.. Even though KZM should be

singular at this point, a fact that precludes convergence, it is believed that
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the STEP1D model converged for two reasons. First, the CNR iterative pro-
cedure is stopped when the 2-norm of r is smaller than the input tolerance
7. Second. the scalings and the factorization of KZM introduce numerical
round off errors that perturb the generated solution off of the bifurcation

KEM nonsingular.

point just enough to render
The STEP1D model returned the result of an applied external field

and no current in the conductor because it does not enforce the current

conservation constraint I — fI‘ dlfi, - j = 0. The addition of this constraint

automatically allows an EM model to distinguish between cases where the

field at r. is generated by a current I or by an externally applied B field. -

The eigenvalue analysis of KEM for earlier versions of Ginzburg-Landau and

London superconducting finite elements that contained the current conserva-

tion constraint showed that the current conservation constraint is redundant

when no external fields are applied to the system or when vEM does not lie

upon the bifurcation point. These two cases are not considered in this work

and are not presented here.

To summarize, the basic path determination process is as follows:

Solve system of equations for v,4;.

Find 7 by using 7o = T, + C;{H?}_,.

Find B. at T, by using Equation (4.4.1).

Find I by using I = I, + CEI:,'IHIL.

Find By at r. by using Equation (11.2.1).

If Boir.) > Be, go to H.; if not, go to G.

If 7. > T, go to H.; if not, go to L.

m e MmUY QW

If the current EM element type is STEP1D, change it to LET1D and go

back to A.; if it is not, go to J.
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‘"I If the current EM element type is LET1D, change it to STEP1D, reset
the reference state of vEM and go back to A.; if it is not, go to J.
J.  Accept solution vector Vn41 for the current step.

Additional logic statements are included in the actual coding to help
prevent the STEP1D element from ekceeding the bifurcation point. Beyond
the bifurcation point, the elementrwil_l “zero in” upon the same type of solu-
tion thaf, occurs when the elemént is forced to cbnverge upon the bifurcation
point. A quantum state is géneratéd where there is no current in the con-
ductor and a boundary Bj field loading of magnitude (uoI)/(27r.) exists.
This state usually requires more iterations to converge upon a solution and a-
lé.fggr sdlutiion tolerance 7 than physical étates that lie below the bifurcation
point on the equilibrium path. Non—physii:é.l solutions for the superconduc-
tor that lie beyond the bifurcation point can also cause the CNR procedure
to fail if 7 is too small or if the maximum number of allowed iterations for
the solution procedure is exceeded.

To prevent the STEP1D element from moving past the bifurcation

point and encountering these problems when the current load I is being

incremented, steps C through E of the path determination procedure are |

pe;formed prior to each corrector iteration. The current iteration value of
¢ EA,’{ 41 1s used for step D because the actual stephsize ai;)ng the eduilibrium
path may change with each iteration. If the step size changes, then ¢(EM 1
changes for each iteration and so does the value of I. If B. is exceeded at rc
for any iteration, the program changes the element type to LET1D, and the

solution procedure restarts at step n and attempts to increment the loading

tostepn + 1.



211

For the case where the thermal loading is varied, steps B through
E are performed prior to each predictor step. For this case where the tem-
perature T is being incremented, the current I is held steady and causes no
problems because ¢ EM jsheld constant and is known before the predictor and
corrector steps are taken. 7 is also known a priori as being T, + €T+ 1)1
at step n + 1 as discussed in Section 11.1. Because ¢7., is known before
the solution procedure begins, steps B through E of the path determination
process can be used to determine if the solution vector will move past the
bifurcation point before the solution process begins. Inserting this test before
the predictor step keeps the program from performing an unnecessary solu-
tion step. After steps B through E of the path determination process are
performed, B.(7+1) and 7T, are compared to Bo(r.) and T, respectively.
If either of the two latter quantities exceed their critical values the EM el-
ement type is changed to LET1D and the solution procedure is allowed to
continue. If the critical values are not exceeded, the solution procedure is

allowed to continue unaffected.

11.3 NUMERICAL EXAMPLES.

The LINT1D, LET1D and STEP1D finite elements derived in previ-
ous chapters have been applied to the solution of the test problems described
later in this section. The CUPLE1D and STEP1D elements were used to
determine EM quantities and the LINT1D element was used to determine
the thermal distribution for the normal éta.te of the superconductor. The
temperature of each node of the superconductor is calculated as described in
Section 11.1 of this chapter. The description of the nodal degrees of freedom

and the calculation of the material properties of each element may be found
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" in their respective chapters. The application of boundary conditions, scal-
ing techniques, mesh generation techniques and the assembly and solution
techniques are also described in the respective chapters. For the graphical re-
sults generated in this chapter, By was calculated by using the integral form
of Maxwell’s inhomogeneous equation for magnetic fields, Equation (7.1.5).
This equation requires knowledge of jﬁ"') to determine Bg. For the super-

conducting phase, jﬁ‘) is calculated by using Equation (3.2.16) and for the
-

normal phase ]:e) is calculated by using the elemental values returned in the

solution vector v. The integral of Equation (7.1.5) is evaluated by 2 point

Gaussian integration.

11.3.1 PROBIEM 1: VARYING 7 LOAD.

For this problem and the next, the test material is high purity alu-
minum. Reference and initial states of the system are set as described in
previous chapters. The geometry is that of a one-dimensional axisymmetric
wire as shown in Figure 2.1. The wire radius r is 1.15 X 10~* meters and
transported a total current I in the positive z direction. The initial current
I, is 1 ampere and the loading current Iy is 0 amperes. The initial free
stream temperature is .5625° Kelvin and the loading temperature I s 1°
Kelvin. Because the free-space magnetic field element has been validated
previously, all elements are within the wire. The mesh for the superconduct-
ing phase has 98 elements in the boundary layer and 2 elements in the bulk
layer while the mesh for the normal phase of the conductor has 50 elements
in the coarse mesh and 50 elements in the fine mesh. As in Chapters IX
and X the depth of the fine mesh was .25 r. for the normal conductor. The

depth of the boundary layer mesh for the superconducting phase varies with
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temperature as discussed in Chapter VIII. The step size I, is chosen as .0125
and 80 steps are used to increment (7 from 0.0 to 1.0. A solution tolerance
T of 4 x 10™17 is used for the superconducting state and 9 x 10™* is used for
the normal state.

The solution procedure required 41 steps in the superconducting
phase averaging 4.61 iterations per step. The estimated condition number
for these steps ranges between 181 and 834. The solution procedure then
required 39 steps in the normal phase with an average of 2 iterations per
step. The estimated condition number varies between 29861 and 204664.

Data output files for all of the figures to be shown for all examples
in this chapter are saved every tenth step and all graphical representations
of this data are labeled with the appropriate values of (7 or (E™ when
it was possible. Graphical representations of each data set are generated
by using the PLOT2D utility to produce a raster file and then using the
raster files to create a PostScript language file. This is mentioned because
the graphical representations of data sets are subject to the limits of the
PLOT2D utility. The data sets for each variable were then loaded into a
single file, and PostScript language commands were used to generate axes
and data set labels and legends. This is mentioned for researchers who
wish to duplicate the graphical results because the PLOT2D utility does not
possess the ability to add the desired labels and font types or graph 10 sets
of data on a single graph.

Results for the temperature distribution within the wire are shown
in Figure 11.1 and match the expected physical behavior. The results for
[%|?/1%o|? in the region 1.023 x 10~* < r < r. are presented in Figure

11.2. The value of the normalized value of 1| is not shown over the whole
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conductor because all of the physics of interest occured within the boundary
layer. The value for |9|?/|thoo|? for r in the region 0 < r < 1.023 x 1074 is
é, constant equal to 1.0. The expected physical behavior for the normalized
value of |#| in the boundary layer was that as the temperature increased,

the boundary layer depth would increase and [¥]?/|¥oo]?* would vary over

a wider range of r. This physical behavior is accurately captured by the

STEP1D element and is shown in Figure 11.2. Figures 11.3 and 11.4 show the
value of the current density jﬁ‘) in the normal and superconducting phases
respectively. For the superconducting phase, only the boundary layer values
are shown with all other values of jﬁ‘) being equal to zero. The value of j£°)
at each node for the superconducting phase is calculated by use of Equation
(3.2.16). Because the current I was steady, the magnitude of the current
density should decrease as the temperature increases for the superconducting
phase. The boundary layer depth should also increase. Again both physical
characteristics are accurately depicted by the STEP1D model.

For the normal phase of the conductor, j;(,e) is depicted as a step
function in Figure 11.4. The step function represention is necessary because
the current density is approximated by a step function over an element by
the LET1D finite element. The results for the steps where ¢7T equals 0.7
and 0.9 were omitted for clarity. By referring back to Figure 11.1 some
determinations can be made about the behavior of j {*) for the normal phase.
It can be seen that the temperature is higher at the center of the conductor

than at r.. The resistivity should also be higher at the center and j () should

be smaller there.
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As the temperature of the wire increases, the amount of thermal
energy produced by the current I through a wire should remain almost con-
stant. The rest of the thermal energy in this system comes from the free
stream temperature boundary conditions. The significance of this is that
the temperature distribution in the wire should become more homogeneous
and the magnitude of the heat absorbed by the system from the free stream
boundary conditions should eventually become greater than the magnitude
of the heat produced by resistance to the current I. The resistivity will also
be determined more by the boundary conditions than by the heat generated
by the steady current I. The temperature should become more homogeneous
throughout the wire and the resistivities and current densities should follow
suit. This expected behavior'is accurately modeled by the finite element
approximation as can be observed in Figure 11.4.

The only behavior that at first appears to be non-physical is the
jump in the magnitude of the current density as the conductor changes from
the normal to the superconducting phase. This is easily explained because
J £e) is a function of the resistivity « and the E field for the normal state while
it is a function of A{® and |¢| for the superconducting state. The easiest
way to verify that the current density predicted by the finite element method
is exact is the use of the integral form of Maxwell’s inhomogeneous magnetic
field equation (Equation (7.1.5)) to evaluate By at r.. This equation requires
that no matter what the j. distribution may be, that for wires carrying the
same current I, the value of By at r. will always be the same. Because the
current I is held steady for this example, By should always be the same at 7,
independent of the quantum state of the conductor. Figure 11.5 shows this

expected behavior accurately and also demonstrates why Equation (7.1.5)
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has been used to compute the By field for the results presentation of this
chapter. Equation (7.1.5) allows the value of By to be computed at each
node while thé equation used in previous chapters, Equation (5.3.2), only
allows the computation of the mean value of By over each element. By
using Equation (7.1.5), the accuracy of computed values of jﬁ‘) can easily be
verified by comparing values of By at . | '
Figures 11.5 and 11.6 show the distribution of the By field within the
conductor as the temperature was increased. Figure 11.5 shows only values
of By that lie within the boundary layer while Figure 11.6 shows values for
the normal state of the conductor for r between 0 and r.. In Figure 11.5, it
can be seen that the B, field penetrates more deeply into the conductor as
the temperature of the conductor increases. This is the desired and expected
physical behavior. In Figure 116, it can be seen that the small increase in
the temperature for (7 equal to .6 to 1.0 produces no significant changes
in the By field. The changes are so small that the PLOT2D utility connot
discern changes in By as the temperature increased although there is a small
change in the By field that follows changes in jge). The maximum nodal
change of By as ¢7 is varied from .6 to 1.0 was ~ 2 x 10~* percent. This
percent difference of By occurred between the states where (7 was equal to

.6 and 1.0.

11.3.2 PROBLEM 2: VARYING I LOAD.

As mentioned earlier, the test material is high purity aluminum.
Reference and initial states are set as described in previous chapters. The
geometry is the same as that of Problem 1 of this chapter with 7. being

equal to 1.15 x 10_4 Vmeters, Neoarse = Nfine = 50 elements for the normal
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state and Vyuix and Npoung being equal to 2 and 98 elements respectively
for the superconducting state. The initial current I, is 1 ampere and the
loading current Iy is 2.1 amperes. The initial free stream temperature 7, is
1° Kelvin and the loading temperature 7y, is 0° Kelvin. Again no elements
were generated external to the conductor/free space boundary located at 7.
Meshes for both states are generated as described in Chapters VIII and IX.
The step size I, is chosen to be .01 and 80 steps were used to increment ¢ EM
from 0.0 to .73. The solution tolerances  of 4 x 10717 and 9 x 10~* are used
for the superconducting and normal states respectively.

The solution procedure required 40 steps in the superconducting
phase averaging 3.65 iterations per step. The estimated condition number
for these steps ranged between 231 and 10935. The solution procedure then
required 40 steps in the normal phase averaging 2.05 iterations per step.
The estimated K condition number for these steps varied between 28146
to 181319. Data output files were saved every tenth step as stated in the
previous section.

Results for the temperature distribution in the whole wire are shown
in Figure 11.7. Because the free stream temperature 7, is held constant at 1°
Kelvin, the major source of heat energy comes from resistance of the current
flow I through the wire rather than from boundary loading. This caused the
temperature differential between the center of the wire and r equal to r. to
be greater than in Problem 1 of the previous section. This expected physical
behavior is shown in Figure 11.7.

Figure 11.8 depicts the behavior of |1|?/|theo|? for the region where
r varies between 1.0597 x 10~% and 1.1887 x 10™* meters. For r between 0

and 1.0597 x 10~ meters, |¢|*/|hoo|? is unity. Graphical results of the data
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obtained for (EM equal to .16 and .30 are omitted for clarity. Physically
it is expected that as the current I is increased, the system will move to a
higher energy state. As the energy of the system increases, the boundary
layer should widen independently of whether the energy source is thermal
or electromagnetic rin nature. This behavior is accurately reflected in Figure
11.8, butrcomrprarison of this plotr with Figure 11.2 shows that for the current I
loading case, it appears that there was more of a shifting of the distribution of
the Cooper pairs towards the center of the conductor rather than a reordering
of the distribution. An exphnation of the physics of these two cases can be
‘made by invoking the London model of isu?percon»ductivity.

With the London model, the number deﬁsify of Cooper pairs Mk
is only a function of the temperature 7 and is equal to |¥eo]?- Using this
information and refering to Equation (4.4.4), it can be seen that as the
temperature incréases, the total number of the Cooper pairs will decrease.
This is the general behavior of the Ginzburg-Landau superconductor as well.
As the temperature increases in Figure 11.2, the number of Cooper pairs
in tl;e curéent stream must also remain constant because I is constant. To
maintain the same number of Cooper pairs within the current stream as 7
increases, the system must reorder itsélf and impart a kinetic momentum to
pairs that lie déeper within the boundary layer.

For thé case of an increé.sing current I and steady temperature 7,
the total number and distribution of the Cooper pairs must remain approx-
imately constant. As the current I is increased, the number of the Cooper
pairs remains essentially constant, but the number of Cooper pairs with a
kinetic momentum increases. This increase in the energy of the system de-

stroys some of the Cooper pairs. The annihilation of Cooper pairs occurs at
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the most energetically favorable position, within the boundary layer. This
also serves the dual purpose of widening the boundary layer, upon which
an increased number of Cooper pairs with kinetic momentum is allowed to
move more easily. This expected behavior explains why there is more of
a “shifting” of the distribution of the Cooper pairs in Figure 11.8 than a
reordering of the distribution. The boundary layer is widening in response
to the increasing number of pairs with a kinetic momentum. In Problem 1,
the amount of Cooper pairs a.nnihilatéd by the increasing thermal energy is
much greater than those destroyed by the increasing EM energy of Problem
2. This relative change in the number of Cooper pairs as an incremental step
is taken explains the nature of the difference of the two plots.

Figures 11.9 and 11.10 show the change in jge) as (EM was incre-
mented. Figure 11.9 shows the superconducting state and Figure 11.10 shows
the normal state. Figure 11.9 only shows values in the boundary layer. Out-
side of this layer, the plotted values of j§°) for the superconducting state
vanish. For this figure, different line types and a legend are used so that
the plots for (EM equal to .30 and .32 are more easily distinguishable. The
graphical representation of j£‘) in Figure 11.9 matches the expected physi-
cal behavior. As I is increased, the boundary layer should spread and the
magnitude of jﬁ") should also increase. The STEP1D finite element also
captured this expected behavior well. As in Problem 1, the current density
should be higher at r. than the center of the conductor for the normal state.
There should also be an increase in the magnitude of jf,‘) as the current I
is increased. The LET1D element performed as expected and modeled this

expected physical behavior.
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Figures 11.11 and 11.12 show the Finite Element values of By plotted
over the boundary layer and the whole conductor respectively. Figure 11.11
omits the labels for (EM equal to .50 and .66 for clarity. Similarly, Figure
11.12 omits the labels for (EM equal to .16, .23, .30, .50 and .66. The ex-
pected physical behavior for the superconducting state is that as the current
increases, the magnitude of By will increase and penetrate more deeply into
the boundary layer. For the normal state, the magnitude of By should keep
on increasing but it simuld also be an almost linear function of the distance
r from the center of the conductor. Both of these physical behaviors are
again modeled well by the finite element computed solutions and illustrate

the ability of the four-potential based finite elements to model EM fields.
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11.4 SUMMARY.

This chapter “glues” together all of the previously derived finite el-
ements into a comprehensive program that can determine the correct equi-
librium state of a thermally and quantum mechanically coupled EM system.
The primary emphasis is the discussion of the results for two different cou-
pled problems but two other topics are also discussed: the solution of the
superconducting problem where I is constant and T is varied, and the de-
termination of whether an EM system is in the superconducting or normal
state.

The constant I, varying 7o, problem mentioned above is solved
rather easily as is the determination of the correct quantum state. The
only real problem and failing of the final model that is developed here is its
inability to accurately model a system within a conductor that has mixed
normal and superconducting states near the transition point. Fortunately,
the four-potential method is readily extensible to the solution of this problem
although it is not addressed in this thesis primarily because the development
of an adaptive two-dimensional mesh to deal with conditioning problems of
the tangent stiffness matrix would have required a considerable investment

of time and effort.






CHAPTER XII

CONCLUSIONS.

12.1 SUMMARY OF WORK.

As mentioned in Chapter 1, the primary purpose of this work is
to develop a finite element model for types I and II superconductivity that
can accurately predict EM quantities. This model is to include thermal ef-
fects and to have the ability to change between superconducting and normal
phases when necessary. Originally, this model was to be based upon the four-
potential variational principle to reduce the number of degrees of freedom
per element node. However, it was discovered during the course of research
that the four-potential variational principle offered more advantages for the
analysis of EM problems than just the simple reduction of element nodal de-
grees of freedom. More important is the ability of the four-potential method
to model any EM problem that has been posed here through the adjunction
of constraints by a Lagrangian multiplier. An equally important advantage
of the four-potential method is that B and D discontinuities at material
interfaces are enforced automatically and require no special attention from
the user. The current predicting elements presented in this work required a
special boundary treatment solely because j is used as an independent vari-
able instead of ®. This choice was made originally to simplify the current

conservation constraint and was not changed. The simpler @ formulation
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given by Equation (3.1.5) reduces the number of degrees of freedom required
by a one-dimensional current predicting finite element by two.

To produce the desired four-potential based EM finite element men-
tioned in the first paragraph, a functional that used A and @ is first de-
veloped for any arbitrary material. This functional is then augmented by
the Lorentz gauge constraint to ensure that A is unique. The augmented
functional is then applied to one and two-dimensional geometries and the
natural boundary conditions of the two- geometries are determined. At this
point, it was determined that a further extension of the new functional was
necessary to model the more general case of an unknown current der;sity J
This extension is necessary because the arbitrary nature of geometries for
EM problems does not always permit a priori knowledge of the distribution
of a current within a conducting medium. It was also realized that tempera-
ture differentials within a conductor make the resistivity within a conductor
inhomogeneous. The varying resistivities also preclude an a priori knowledge
of j within a conductor.

To model the thermal effects that are eventually added to the EM
model of a normal state conductor it was therefore necessary to extend the
previously derived four-potential V{unggrigpa.ls? to inclrudér cases where j is un-
known. This is accomplished by aﬁgrﬁentiﬁg a gauged form of the four-
potential functional by an additional constraint, the current conservation
constraint. The functional is also modified by making j a primary variable
instead of ® throughrthe:gs:gof the constitutive rela,trironr between ® and j.
This substitution requires the additional augmentation of the functional by
a boundary coﬁtinuify ‘constraint. The additional constraint is necessary

because the previous substitution for ¢ inhibits a necessary integration by
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parts that ensures the continuity of the E field across material interfaces.
The final functional is a four-potential based functional for determining EM
fields in linear conducting materials.

The next phase extends the four-potential variational principle to
cover type I and II superconducting materials. The Ginsburg-Landau equa-
tions provide the necessary basis for this extension. The variational func-
tional used to derive these equations contains the magnetic vector potential
A. This functional also contains terms that represent a Landau expansion of
the Helmholtz free energy of the quantum wave order parameter ¢ around
the critical temperature 7.. To adapt this functional to the four-potential
method tke electric field energy Ug is added and the gauge constraint ad-
joined. The gauge constraint used here is the London gauge which is identical
to the Lorentz gauge for magnetostatic problems. Because all of the super-
conductivity cases that are considered here are free of electrostatic charge,
the electric field energy Ug is zero and this term is not included in the
functionals of this work. After the augmentation of the Ginzburg-Landau
variational functional by the London gauge consiraint is complete, the two
material parameters ¢ and 3 of the Landau expansion are determined as
functions of the effective penetration depth A.fs and the critical magnetic
field B, of a superconducting material.

Conventional thermal field variational functionals are then used to
describe the thermal energy of the EM systems under consideration. The
temperature dependence of material parameters is also developed for con-
ductors in both the superconducting and normal states.

This modeling work completes the necessary background for the de-

velopment of EM finite elements that are thermally and quantum phase
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coupled. Elements and solution procedures are then developed. The most

significant features of the finite elements are:

1.

The normal element has the ability to predict current densities with a
high degree of accuracy.

The superconducting element has the ability to show the current density
distribution in much greater detail than ever before. The significance of
this feature is that if the Ginzburg-Landau model of superconductivity
is correct, there is -a greater understanding of the physics that occur
within a superconductor.

A nonlinear superconducting finite element that does not require path
following procedures to determine equilibrium states if the correct ref-
erence state and mesh are chosen.

A superconducting finite element that also is rapidly convergent upon
a solution, well conditioned and, as far as the author has been able to
detérﬁﬁne, generally convergent upon the equilibrium solution provided
the correct reference state and mesh have been selected.

The combined use of the thermal, normal, and superconducting el-
ements provides for a comprehensive program that can analyze any
physical eqﬁﬂibrium state of a conductor except for the mixed nor-
mal/superconducting state. Appropriate modifictions to allow for the
modeling of this state are also suggested.

Finite element models that can model any EM media provided that the
thermal and EMrgrrroprerties of the medium are known.

Finite element models that are modular and employ standard linear and

nonlinear assembly, scaling, and solution techniques.
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8. Finite element models that require no special boundary treatment for
adjacent elements that possess differing EM or thermal properties.

9. EM finite elements that can predict electric and magnetic fields with a
high degree of accuracy.

10. EM Finite elements that require fewer degrees of freedom for the analysis
of two and three-dimensional field problems than the conventional field

based finite elements currently in use.

12.2 DIRECTIONS FOR FURTHER RESEARCH.

The focus of this work is upon the analysis of magnetostatic EM field
problems. These cover a significant but small part of the range of EM field
problems that are of interest to scientists and engineers. The ready exten-
sion of the four-potential variational principle to a wide range of EM field
problems provides a powerful tool for the solution of difficult EM problems.

An unsolved problem of most interest to the author is the one where
normal and superconducting state coexist near the transition state. A re-
alistic treatment of this problem requires two- and three-dimensional space
discretization and consequently follows outside the scope of this work. To
extend the present work to that problem, a multidimensional adaptive mesh
appears to be necessary to determine the interface between normal and su-
perconducting portions of a conductor as well as to improve the conditioning
of the tangent stiffness matrix.

Another direction that scientific research can take from the results of

this work is experimental verification of these results. This verification would
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add considerably more evidence for the validity of the Ginzburg-Landau the-
ory of superconductivity as well as a greater understanding of supercon-
ductivity in general. Even without this verification, the results herein that
compare the current density to a low viscosity fluid stream might be applied
to the analysis and eventual development of a model of high temperature
superconductivity.

Other problems of active interest to the engineering community are
dynami'cal in nature. These problems include the analysis of time-dependent
EM waves moving through fixed (static) EM media, as well as EM media
coupled with rap{d mechanical motions. These problems are highly comples,
but the general applicability of the four-potential method to EM problems
in general appears to be well suited for the numerical treatment of these
problems. S o o 3

Finally, the thermal functionals that are used to analyze the tem-
perature distribution within the conductor are adequate for the relatively
minor loadings and changes of loadings that are presented here. A direction
of further research that the author has already undertaken is the develop-
ment of thermal finite elements that are nonlinear in nature. These elements
allow the thermal conductivity & and the electrical resistivity w to be func-
tions of the temperatﬁrerT rather than the spé,fial coordinates. It is hoped
that these elements will permit a more accurate analysis of the temperature
distribution within a normal conductor and allow larger “steps” to be taken
with solution path following techniques.

In conclusion, the EM finite elements that are presented here have

performed well and confirmed the ability of the four-potential variational

1 ,
oo [ | LT
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principle to solve a range of problems. The author believes that this method-
olgy is relatively simple to use and exhibits key advantages over current field
based formulations. Potential based formulations and variational principles
show promise for the treatment of unsolved EM problems and should both

be given due consideration over field-based formulations.






REFERENCES

Schuler, J., and Felippa, C., “Electromagnetic Axisymmetric Finite El-
ements Based on a Gauged Four-Potential Variational Principle”, Com-

puting Systems in Engineering, 1990, 1, pp. 273-284

Felippa, C. A. and T. L. Geers, “Partitioned Analysis of Coupled Me-

chanical Systems,” Engineering Computations, 5, 1988, pp. 123-133

Park, K. C. and C. A. Felippa, “Partitioned Analysis of Coupled Sys-
tems,” Chapter 3 in Computational Methods for Transient Analysis,
ed. by T. Belytschko and T. J. R. Hughes, North-Holland, Amsterdam-
New York, 1983

Felippa, C. A.,, “The Extended Free Formulation of Finite Elements in
Linear Elasticity,” Journal of Applied Mechanics, 56, 3, 1989, pp. 609-
616

Felippa, C. A. and C. Militello, “Developments in Variational Meth-
ods for High-Performance Plate and Shell Elements,” in Analytical and
Computational Models for Shells, CED Vol. 3, ed. by A. K. Noor, T. Be-
lytschko and J. C. Simo, The American Society of Mechanical Engineers,
ASME, New York, 1989, pp. 191-216

Felippa, C. A. and C. Militello, “The Variational Formulation of High-
Performance Finite Elements: Parametrized Variational Principles,”

(with C. Militello), Computers & Structures, 36, 1990, pp. 1-11



10.

11.

12.

13.

14,

242

Militello, C. and C. A. Felippa, “A Variational Justification of the As-
sumed Natural Strain Formulation of Finite Elements: I. Variational
Principles,” (with C. Militello), Computers & Sitructures, 34, 1990,
pp. 431-438

Militello, C. and C. A. Felippa, “A Variational Justification of the
Assumed Natural Strain Formulation of Finite Elements: II. The C°
4-Node Plate Element,” Computers & Structures, 34, 1990, pp. 439-444
Farhat, C. and Park, K.C., “An Unconditionally Stable Staggered Algo-
rithm for Transient Finite Element Analysis of Coupled Thermoelastic
Problems”, Computer Methods in Applied Mechanics and Engineering,
85, 1991, pp. 349-365

Davies, J. B., “The Finite Element Method,” Chapter 2 in Numers-
cal Technigques for Microwave and Millimeter-Wave Passive Structures,
ed. by T. Itoh, Wiley, New York, 1989

Trowbridge, C. W., “Numerical Solution of Electromagnetic Field Prob-
lems in Two and Three Dimensi_ons,” Chapter 18 in Numerical Methods
in Coupled Problems, ed. by R. Lewis et.al., Wiley, London, 1984
Jackson, J. D., Classical Electrodynamics, 2nd. ed, Wiley, New York,
1975

Mosig, J. R., “Integral Equation Technique”, Chapter 3 in Numer:-
cal Techniques for Microwave and Millimeter- Wave Passive Structures,
ed. by T. Itoh, Wiley, New York, 1989

Grant, 1.S. and Phillips, W. R., Electromagnetism, Wiley, New York,
1984



15.

16.

17.

18.

19.

20.

21.

22.

243

Baird, D.C. and Mukherjee, B. K., “Destruction of Superconductivity
by a Current”, Physics Letters, 25A, 1967, pp. 137-138

Mukherjee, B. K., Allen, J. F. and Baird, D.C., “Destruction of Su-
perconductivity by a Current”, Proceedings of the 11th. International
Conference on Low Temperature Physics, University of St. Andrews,

Physics Dept., St. Andrews, Scotland, 1967, pp. 827-830

Yuan, K.-Y., Moon, F. C. and Abel, J. F., “Elastic Conducting Struc-
tures in Pulsed Magnetic Fields”, Chapter 19 in Numerical Methods in
Coupled Problems, ed. by R. Lewis et.al., Wiley, London, 1984

Bossavit, A., “Solving Maxwell Equations in a Closed Cavity, and the
Question of ‘Spurious Modes™, IEEE Transactions on Magnetics, 26,
1990, pp. 702-705

Gelfand, I. M. and Fomin, S. V., Calculus of Variations, Prentice-Hall,
Englewood Cliffs, N. J., 1963

Yourgrau, W., and Mandelstam, S., Variational Principles in Dynamics

and Quantum Theory, Dover Publications, Inc., New York, 1968

Tinkham, M., Introduction to Superconductivity, Krieger Pub. Co., Mal-
abar, Florida, 1975

Felippa, C. A. and Ohayon, R., “Treatment of Coupled Fluid-Structure
Interaction Problems by a Mixed Variational Principle,” Proceedings 7th
International Conference on Finite Element Methods in Fluids, ed. by

T. J. Chung et.al., University of Alabama Press, Huntsville, Alabama,
April 1989, pp. 555-563



23.

24.

244

Felippa, C. A. and Ohayon, R., “Mixed Variational Formulation of Fi-
nite Element Analysis of Acousto-Elastic Fluid-Structure Interaction,”

Journal of Fluids & Structures, 1990, 4, pp. 35-37

Wilson, Edward L., and Nickell, Robert E., “Application of the Finite

© Element Method to Heat Conduction Analysis”, Nuclear Engineering

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

and Design, 1966, 4, pp. 276-286.

Schuler, James J., “Infinite Axisymmetric Elements for Electromagne-
tostatics”, Term Projects in Advanced Finite Element M ethods, Felippa,

C. A., ed., May 1990, Vol. IL

Eyges, L., The Classical Electromagnetic Field, Dover, New York, 1980
Rojanski, V., The Electromagnetic Field, Dover, New York, 1979
Shadowitz, A., The Electromagnetic Field, Dover, New York, 1975
Lorentz, H. A., Theory of Electrons, 2nd. ed, Dover, New York, 1952
Lanczos, C., The Variational P;iﬁciples of Mechanics, Univ. of Toronto
Press, Toronto, 1949 ”

Kittel,C., Introduction t;) SolidrrState Physics, 6th. ed, Wiléy, New York,
1086 o |

Schuler, J., and Felippa, C., “Analysis of S{lperconduct:ing Electromagn-

t61E ijte Elenﬁenis Based on a M;.gﬁéﬁic Vector Variational Principle”,
CSSC rebc;rt CU—CSSC-QI-28; 70c17;;3ber 1991

Incropera, Frank P., and De Witt, David P., Fundamentals of Heat and
M asé Transfer, Wiley, New York,_ 1985

Serway, Raymond A., Physics for Sicz'ént'istsr aﬁ;lrEn;gineer.s, Saunders

College Publishing, New York, 1983

i

1l

[ I

|1 HER



35.

36.

37.

38.

39.

40.

41.

43.

245
Morse, Philip M., Thermal Physics, The Benjamin/Cummings Publish-
ing Co., Inc., Reading, Mass., 1969

Touloukian, Y.S., Powell, R. W., Ho, C.Y., and Klemens, P. G., Ther-
mophysical Properties of Matter, Vol. 1, Plenum Publishing Co., New
York, N.Y., 1970

Blatt, Frank J., Physics of Electronic Conduction in Solids, McGraw-

_Hill Book Co., New York, 1968

Doss, James D., Engineer’s Guide to High- Temperature Superconductiv-

ity, Wiley, New York, 1989

Meaden, George Terence, Electrical Resistance of Metals, Plenum Press,
New York, 1965
Boorse, H.A., and Niewodniczanski, H.,- “The Electrical Resistance of

Aluminum at Low Temperatures”, Proceedings of the Royal Society of

London, SeriesA, 1936, 879, pp. 463-475

Handbook of Mathematical Functions, ed. by Milton Abramowitz and
Irene A. Stegun, U.S. Dept. of Commerce, National Bureau of Stan-
dards. Washington, D.C., 1965

Lynton, E.A., Superconductivity, Methuen & Co. Ltd., London, 1969

Purcell, Edward M., FElectricity and Magnetism, Vol. 2, McGraw-Hill
Book Co., New York, 1985



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this of information is esti d to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
tion. Send ¢« regarding this burden estimate or any other aspect of this

gathering and maintaining the data needed, and completing and reviewing the collection of inft
collection of information, inciuding suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1993 Final Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Finite Element Analysis of Time-Independent Superconductivity
WU-509-10-11
G-NAG3-934

6. AUTHOR(S})

James J. Schuler

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
REPORT NUMBER

University of Colorado
Department of Aerospace Engineering Sciences and Center for E-7852

Space Structures and Controls
Boulder, Colorado 80309-0429 :
10. SPONSORING/MONITORING

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135-3191

NASA CR-191140

11. SUPPLEMENTARY NOTES
Project Manager, Christos C. Chamis, Structures Division, (216) 433-3252. This report was submitted by James J.

Schuler as a thesis in partial fulfillment of the requirements for the degree Doctor of Philosophy in Aerospace Engineer-
ing Sciences to University of Colorado, Boulder, Colorado.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category 39

13. ABSTRACT (Maximum 200 words)

The development of electromagnetic (EM) finite elements based upon a generalized four-potential variational principal.
The use of the four-potential variational principle allows for downstream coupling of electromagnetic fields with the
thermal, mechanical and quantum effects exhibited by superconducting materials. The use of variational methods to
model an electromagnetic system allows for a greater range of applications than just the superconducting problem. The -
four-potential variational principal can be used to solve a broader range of EM problems than any of the currently
available formulations. It also reduces the number of independent variables from six to four while easily dealing with
conductor/insulator interfaces. This methodology has been applied to a range of EM field problems. Results from all
these problems predict EM quantities exceptionally well and are consistent with the expected physical behavior.

14. SUBJECT TERMS ) 15. NUMBER OF PAGES
Field problems; Electromagnetic; Thermal structural; Nonlinear; Four-potential; T PRICE cﬁgz
Variational principle; Augmented Lagrange ALl
17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified -
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500
Prescribed by ANS! Std. Z39-18
298-102

) TRERTIEN | 1§



